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ABSTRACT 

A comprehensive and balanced review of complex chemical equilibrium 

computations is given by considering not only some of the theoretical but also 

some of the pragmatic aspects of the problem. We begin by briefly surveying 

some of the pertinent thermodynamic principles and use these to derive and 

compare two alternate formulations of the equations governing chemical and 
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phase equilibria. This is followed by a discussion of some algorithms for 

solving systems of nonlinear equations. We include not only a discussion of 

those algorithms which have been used in  equilibrium computations but also 

some that have not been used but a r e  potentially useful. 

With this background, we present a historical review of some of the more 

significant developments in the calculation of complex equilibria. We conclude 

by giving examples of the application of thermodynamic computations to prac- 

tical problems, and in this connection we point out how some common thermo- 

dynamic misconceptions can cause difficulties. 

INTRODUCTION 

Numerical calculations of chemical equilibria have concerned chemists 

and chemical engineers for a great many years; however, only rarely was it 

necessary for them to consider more than a single chemical reaction. Thus, 

to many individuals, chemical equilibrium was characterized by a single equi- 

librium constant and equilibrium compositions could be calculated almost triv- 
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ially. In a few situations, it was necessary to consider simultaneous equilib- 

ria involving perhaps two or three reactions, A relatively familiar case of 

such a situation is the successive ionization of polybasic acids such as the 

dibasic carbonic acid, H2C03 or the tribasic phosphoric acid, H3P04. 

A s  people began to study chemical processes at more extreme tempera- 

ture and pressure conditions, it soon became apparent that they could no longer 

consider a small number of simultaneous equilibria. For example, to calcu- 

late the flame temperature for the combustion of a hydrocarbon in air it might 

be necessary to consider as many a$ 20 or more chemical reactions, A s  the 

number of reactions increased, SO too did the mathematical difficulties. No 

longer could the simultaneous equilibrium constant relations be solved in 

closed form, even approximately. It became necessary to use either a trial 

and error ,  or aniterative approach to obtain solutions of the system of simul- 

taneous equations. 

Several different approaches have been used to obtain solutions of the sys -  

tem of simultaneous equations describing chemical equilibrium. Some of the 

calculational methods were designed for specific problems and often took ad- 

vantage of some special characteristic of the particular problem to facilitate 

its solution. Other methods were intended to be multi-purpose schemes that 

could, at least in principle, be applied to any chemical equilibrium problem. 

Prior to the advent of computers the special purpose schemes were the most 

widely used. However, as computers became more generally available the 

tendency was to abandon the special methods in  favor of the multi-purpose 
0 

schemes. 

At the present time a predominant proportion of the computations of chem- 
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ical equilibria a r e  done with the multi-purpose schemes. Accordingly, we will 

emphasize these methods in our review and will go into a considerable amount 

of detail. On the other hand, only a cursory examination will be given to the 

special purpose schemes. We shall begin by briefly reviewing some of the 

thermodynamic principles and deriving the equations that a r e  used in the com - 
putation of chemical equilibria. This will be followed by a presentation of some 

of the calculating techniques that are available for solving the nonlinear chem- 

ical equilibrium equations. Having established the necessary background, we 

will then be able to survey the literature and point out some of the advantages 

and disadvantages of the various equilibrium computation schemes that have 

been proposed. Finally we shall complete our paper by discussing the appli- 

cation of equilibrium computations to typical problems. 

THERMODYNAMIC FUNDAMENTALS 

Let us begin our considerations of chemical equilibria by giving a brief 

review of the pertinent thermodynamic fundamentals. This section will serve 

a dual purpose; it will act as a repository for some necessary formulae and al- 

so will introduce our notation. Those readers interested in a more detailed 

exposition of the subject should consult one of the several textbooks listed in 

the references 1 - 9. 

Oppenheim and Wilson are particularly appropriate. 

The excellent textbooks by Callen ', Kirkwood and 

FUNDAMENTAL RELATIONS 

Every thermodynamic system can be completely characterized by any one 

of its fundamental relations; that is, all the thermodynamic information about 

a system can be derived from it. The particular fundamental relation that is 

used is immaterial and is selected on the basis of convenience. For the in- 
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dependent variables temperature, T, and pressure, P, the appropriate funda- 

mental relation is the one expressing the Gibbs free energy, G, in terms of T, 

P and the composition variables. All  other thermodynamic quantities can be 

obtained from G and a r e  expressed in these same variables. It should be noted 

that we will only consider pressure-volume work in our discussion. The func- 

tion G is sometimes called a thermodynamic potential. If one wished to work 

instead with pressure and entropy, S, as the independent variables, then the 

fundamental relation would express the enthalpy H in terms of P, S arid the 

composition variables. Since the temperature and pressure a r e  convenient 

experimental variables, the Gibbs function is probably most familiar and will 

serve as the vehicle for  our discussion. We will assume that several phases 

can exist in our system and that each chemical species is potentially present 

in each phase. We can then write our fundamental relation as 

. 

G = G(T, P, n r )  

cy where ni 

species i in the phase cy. The Greek index on the mole numbers will label 

the phase while the Latin index will label the chemical species. Now the Gibbs 

free energy is an extensive property, proportional to the amount of material 

in the system. This implies that (I. 1) must be a homogeneous function of de- 

gree one in ni . 

(i = 1,2,. . . m; a! = 1,2,. . . p) represents the number of moles of 

cy 

From Eulervs theorem on homogeneous functions we have immediately that 



where the chemical 
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potential p r  is defined to be 

a and is homogeneous of degree zero in P; that is, pi is an intensive quantity. 

A comparison of the differential of G, for fixed T and P, calculated from 

(I. 1) with that calculated from (I. 3) gives the well-known Gibbs-Duhem relation- 

5 
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i, a 

THERMODYNAMIC EQUILIBRIUM 

When the Gibbs f unction is used to describe the thermodynamic system, the 

condition for thermodynamic equilibrium has been stated in the following manner 

by Callen :?? .  . . the equilibrium state minimizes the Gibbs function over the mani - 
fold of states of constant temperature and pressure.. . ? ) .  Thus at equilibrium G 

is an extremum and therefore the variation in G ,  produced by the independent 

variations, must vanish. Not all variations in the mole numbers ni 

dependent. The variations 6 n r  must, as a minimum, satisfy the requirement 

that the total mass of each element is constant regardless of how element is 

distributed among the different chemical species in the system. This might be 

considered the least constrained problem. Additional types of constraints a r e  

possible. For example, an analogous but somewhat more constrained problem 

is obtained by requiring that the mass of each chemical species remains con- 

stant. Such a constraint is appropriate for the study of the distribution of chem- 

ical species among several phases. We will examine in some detail the mini- 

a are in- 



6 

mum constraint of conservation of the element. In order to formulate these 

constraints mathematically let Zi(i = 1, 2, . . . 2 )  be the symbol for the 1 ele- 

ments that make up the thermodynamic system. These are distributed among . 
Q! the various species Yi (i = 1,2 ,  . . . m; Q! = 1,2 ,  . . . p). In this notation the chem- 

ical formula of a species can be written in the form 

The formula numbers a.. represent the number of atoms of the ith element 

in the j th  species. If the system contains by (i = 1, 2, . . . 2 ) gram-atoms of 

element Zi then the conservation of the elements can be written as 

1J 

If ionization is considered, then the conservation of charge can be expressed in 

the same form as (I. 7) where charge is assumed to be the (1 + l)St "elementff. 

The value of bF+l is then zero and a 

Equation (I. 7) represents 1 constraints on the variations 6nP. These are 

supplemented by the non-negativity constraints n r  > - 0. There a r e  only (mp-2) 

independent variations because of the constraints (I. 7). However, all of the 

en. can be considered independently variable if we introduce 2 additional 

variables Xi, the Lagrangian multipliers. Using Lagrangian multipliers Xi 

(i = 1,2, . . . I ) the condition for  equilibrium becomes 

is the charge on the jth species. 

J 

I +1, j 

(I. 

Q! 

J 
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where 

Treating the variations of n? and Xi as independent not only gives 
1 

but also (I. 7) since the use of the Xi permitted us  to regard all of the na! as 

independently variable. We could, of course, have used any other set of inde- 

pendent variations expressible as a linear combination of the 6nF. The only 

effect of this change would be to replace (I. 9) by a new set of equations formed 

from a linear combination of the equations in (I. 9). 

j 

J 

In any case, (I. 7) and either (I. 9) or some linear combination of the equa- 

tions of (I. 9) represent a set of ( I  + mp) nonlinear equations that must be solved 

to determihe Ithe equilibrium compositions and the Lagrangian multipliers. 

However (I. 9) is interesting from still another point of view. Notice that the 

term involving the Lagrangian multipliers Xi is independent of the phase index 

cy. Thus it contains the conditions for phase equilibria; that is, the chemical 

potential of a species is the same in all phases. This is precisely the condition 

that leads to the well-known phase rule of thermodynamics (Kirkwood and 

Oppenheim ). Finally let u s  point out that although the Xi were introduced as 

a mathematical device, they can be given a physical interpretation. Substituting 

(I. 9) into (I. 3) and using (I. 7) we immediately obtain 

5 

\\ 

G = - &hiby 
i 

(I. 10) 



8 

Thus -Xi represents the contribution of the element Zi to the Gibbs free 

energy of the system. 

CHEMICAL REACTIONS 

Since, in the above formulation, the d?O could be regarded as  independent 

variations only at the expense of introducing I new variables, Xi, it would 

seem that this formulation is perhaps not the most economical. In chemical 

thermodynamics it has long been the practice to use independent variations 

corresponding to relatively simple processes that can be written in the form 

of chemical reactions. Thus, for example, we might write the reactions 

E A ; ;  yg = 0 
j ,  

r = 1 , 2 , .  . . , (mp - I )  (I. 11) 

Because of the one-to-one correspondence between the na! and the YO the 

I relations (I. 7) among the na! implies that we have I relations among the 

Yp. Equivalently, this means that the matrix Aa* must be of rank (mp - I ) .  

The ACY* a r e  called the stoichiometric coefficients for the rth reaction and 

are chosen so that the elements are conserved in each of the reactions repre- 

sented by (I. 11). This implies that the Aa*  must satisfy the relations 

j j 

j 

j r  

j r  

j r  

E a . . A a '  1~ j r  = 0 (I. 12) 
j ,  

, 
Conventionally, the AaY. a r e  taken to be positive for the products and negative for 

the reactants. A concrete example of (I. ll), for which the condition (I. 12) is 

satisfied, is thereaction 

j r  
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It should be pointed out that although the reactions (I. 11) may be significant 

kinetically, they a r e  superfluous thermodynamically since all the compositions 

are already determined by (I. 7) and (I. 9). In a sense, these chemical reactions 

violate the spirit of thermodynamics since they specify a mechanism, or path, 

by which reactants a r e  converted to products. A s  is well known, classical 

thermodynamics deals only with s tate functions and for any thermodynamic 

process it is only necessary to know the two end points of the process and not 

the detailed path connecting them. The reactions (I. 11) should most properly 

be regarded only as an artifice for introducing (mp - Z) independent variations, 

St,, one for each reaction. 

1 

In order to relate the variations 6°F to the St , ,  we proceed in the fol- 

lowing manner. The change in the number of moles of YCY produced by the 

rth reaction can be written 
j 

(I. 13) 

The quantity 5, is called the extent of reaction for the rth reaction and is 

defined by (I. 13). The total change in YCY is then obtained by summing (I. 13) 

over all the reactions 
j 

(I. 14) 

It is apparent from (I. 14) that we can replace the variations &na! in equation 

(I. 8) with independent variations 6 5,. A s  was pointed out, thermodynamically 

the chemical reactions are quite arbitrary and hence so too a re  the Aa' with 

only the requirement that its rank be (mp - I ) .  Now substituting (I. 14) into 

(I. 8) and rearranging we obtain 

j 

j r  



Using (I. 12) we find that the conditions of chemical equilibrium take the form 

E A ; & ;  = 0 (I. 16) 
j ,  Q 

and also we again obtain (I. 7).  Because of the use of independent variations the 

hi have disappeared from the problem. A s  a matter of fact we could have ob- 

tained this result directly from a variation of G without introducing the hi if 

we had regarded G as a function of 5,. Alternately, the direct elimination of 

Xi from (I. 9) using (I. 12) also gives (I. 16). These equations represent the 

equilibrium constant expressions for the chemical reactions (I. 11). In this 

equilibrium constant formulation of chemical equilibrium the compositions a re  

obtained by the simultaneous solutions of the set of (mp) nonlinear equations 

represented by (I. 7) and (I. 16). In passing we might point out that the expres- 

sion on the left-hand side of (I. 16) is the negative of de Donders affinity for the 
th 9 r reaction . 

Since the two formulations of the equations governing chemical equilibrium, 

(I. 7, I. 9) and (I. 7, I. 16), haveacommon origin, their content is the same. The 

only difference at this point is that the former set involves (mp + I )  equations 

while the latter involves only (mp) equations, This is somewhat compensated 

by the fact that in  the second formulation one must determine a set of stoichio- 

metric coefficients A:;. In a small system where the number of constitutents 

(mp) is relatively small the determination of the A@* usually presents no 

problem; however, when (mp) is large, it is important to have a more sys- 
j r  

tematic procedure for determining the stoichiometric coefficients. Brinkley 10 
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has discussed this problem in terms of the linear independence of a set of 

vectors constructed from the a.. . With each species Ya we can associate 

a column vector y. 
-1 

11 j 
a! 

a T  ya! - (y. = (alj, a z j , .  . .a  ) j -J 2 j  
(I. 17) 

where the T on the column vector indicates the transpose. Not all of these 

vectors will be linearly independent and, in fact, only c < 2 will be linearly 

independent. Generally, the equality holds and only in special situations does 

the inequality apply. We will henceforth assume c = 2 .  Designating the linearly 

independent vectors by c. (i = 1, . . . , 2 ) we can write 
1 -1 

(I. 18) 

Q P  The phase index does not appear on v since y. = y. and therefore the v 

must be independent of phase. Corresponding to the relationship (I. 18) we have 

the independent reactions (I. 11) written in the form 

kj -3 -3 kj 

2 

(I. 19) 

where c k  represents the chemical formula of the species corresponding to 

the independent vectors c.. The Ck a r e  called components and need not all 

be from the same phase. The v play the role of stoichiometric coefficients. 

When the indices a, j take the values corresponding to the components, the 

equations (I. 18) and (I. 19) are identically zero. The choice of components is 

not unique and from a theoretical point of view all choices are equally good. 

The chemical reactions (I. 19) can now be used to obtain a particular set of 

A?* by comparison with (I. 11). Additionally the conservation of elements 

-1 

kj 

1r 
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can be written in terms of the vkj. Based on (I. 19) the analog to (I. 6) would 

be 
Z 

(I. 20) 

The conservation of elements would now be written as a conservation of com- 

ponents 

(k = 1, 2 , .  . . Z )  E v k j n j  a 0  = q k  
j ,  a! 

(I. 21) 

where the q: represents the moles of the component c k  that must be intro- 
0 duced into the system to achieve the overall composition. The numbers qk 

can be expressed in terms of the b i  and the formula numbers, a.. of the 
1J’ 

components. The conservation relations in  terms of components could be used 

in the minimization of free energy. However no particular advantage is gained 

since this  merely replaces a.. with v.. in (I. 9), causes -Xi be interpreted 

as the contribution of the ith component to the Gibb’s free energy, and re- 

places by with qr in (I. 10). The conditions of chemical equilibrium (I. 16) 

corresponding to the reactions (I. 19), can be written in the dimensionless form 

11 11 

where the pk a re  the chemical potentials of the components. 

The formulation of the equations for determining equilibrium compositions 

assumed that the thermodynamic state was  specified by assigning the temper - 
ature and pressure. That is, in addition to either the set of equations ((I. 7), 

(I. 9)) or ((I. 7), (I. 16)) we had the pair of trivial equations 
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T = To 

P = P o  
(I. 23) 

I 
I -  

l -  

where To, and Po a r e  constants. However any two thermodynamic state 

functions could have been used for the same purpose. For example, to cal- 

culate the flame temperature for a constant pressure combustion (I. 23) would 

be replaced by 

I 

I 

H(T, P,nF) = H, 

P = P  
0 

(I. 24) 

where H is the enthalpy and Ho is a constant equal to the enthalpy of the 

reactants. For an  isentropic or constant entropy process the state may be 

specified as 

S(T, P, ni a! ) = So 

P = Po 
(I. 25) 

In general, we require any two equations involving T, P, and n r  to specify 

the state. The particular ones that are used are largely a matter of conven- 

ience. 

Often chemical equilibrium problems occur that do not require the gener - 
ality of the minimum constraint problem just discussed. Typical of such prob- 

lems is the class of problems related tothe distribution of chemical species 

among several phases. A simple and familiar example of such solvent extrac- 

tion problems is the distribution of iodine between water and carbon tetra- 

chloride An example with physiological importance is the distribution of 

chemicals between the interior of the red blood cells and the blood plasma 11-12 
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Pr,oblems of this kind a re  all characterized by the fact that no "chem- 

ical reactionsfv take place; that is, the total amount of each species remains 

constant. Additionally, we may wish to take into account the existence of actual 

or imaginary semi-permeable membranes, Thus in our water -carbon 

tetrachloride-iodine example we can imagine the water phase to be separated 

from the carbon-tetrachloride phase by a membrane that is permeable only to 

iodine. This is a permissible assumption because of the small mutual solu- 

bility of water and carbon-tetrachloride. For the purpose of formulating the 

equilibrium equations let u s  suppose that each phase is surrounded by a semi- 

permeable membrane that is permeable to all species except the mth. Then 

our constraining equations are 

I3 

(i = 1,2 9 . . . ,  m - 1) 

a! na! m - - 'm (a! = 1,2.. .p )  (I. 26) 

where by now represents the total moles of the ith species introduced into 

the system and cm represents the number of moles of mth species introduced 

into the cyth phase. Additional non-transferable species could be introduced 

without any essential complication. The chief difference between the reaction 

equilibria discussed previously and phase equilibria is the larger number of 

components or independent species. Each of the first m - 1 species is now 

a component while the rnth species furnishes p additional components. The 

condition for  equilibrium now becomes 

Q! 
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6 

m-1 
G + z A i t $ n F  - b$ + &A:(% a - cm) a = 

C Y = l  - i=l - 

. 
m-1 a 

(4 + Xi)6I$ 
i =1 

Therefore we obtain 

a 
1 p .  + x i  = 0 i = l , 2  ,... m - l ; a = l , 2  ? . . .  p 

(I. 27) 
a a p m + h m = O  a=1,2 ,  . . . p  

and in  addition we also obtain the constraining equations (I. 26). The equations 

(I. 27), together with (I. 26), can be used to calculate the equilibrium composi- 

tions. It should be noted that here too the Lagrangian multipliers could be 

eliminated to reduce the number of equations and obtain the equations corre- 

sponding to the vequilibrium constantv formulation of the problem. 

THERMODYNAMIC DEFUVATIVES 

Principally we have relied on the axioms of thermodynamics and our man- 

ipulations to this point have been quite general. There is still one more topic 

that we can discuss without introducing simplifying assumptions. In addition 

to the equilibrium compositions and the thermodynamic functions such as 

enthalpy and entropy one often would like to have the first derivatives of these 

functions, Fortunately it turns out that all first derivatives can be expressed 

in terms of three of them. For example, using the so-called Bridgman tables 

as tabulated by Glasstone 4, all the derivatives can be expressed in terms of 

Cp= aH/aT, aV/aT and aV/aP. In comparison with the determination of 
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equilibrium compositions the evaluation of these three derivatives is almost 

trivial once the equilibrium compositions have been determined. The reason 

for this is that the calculation of these derivatives involves the solution of a 

set of linear equations whereas equilibrium compositions can only be obtained 

by solving a set of nonlinear equations. The enthalpy and volume of the SYS- 

tem can be written as 

(I. 28) 

(I. 29) 

a! a! where H F  = aH/ani and V; = aV/ani are the partial molar enthalpies and 

volumes respectively and where Ha! = ZH'Yn" and Va! =E Vi ni are the 
i 

enthalpy and volume of the atth phase. Equation (I. 29) can be regarded as the 

Cua! 

i 1 i  

equatim of state for the system since it expresses the volume in terms of the 

temperature, pressure and composition. The differentiation of these expres- 

sions gives 

an? c p = c C i q i  aa! + E H y - $ -  
i, a! i, a! 

(I. 30) 

(I. 31) 

(I. 32) 

where we used the fact that H P  and V: a re  homogeneous of degree zero in 
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nP 

of composition changes produced by changes in the system temperature or  

pressure. To evaluate the three derivatives (I. 30), (I. 31), (I. 32) one must know 

anq/aT and an:/,,. These can be obtained by solving the set of linear equa- 

In each of these three expressions the second term represents the effect 
j *  

tions obtained by differentiation from either the set of equations ((I. 7), (I. 9)), or 

((I. 7),(I. 16)) or perhaps the set ((I. 26),(I. 27)). Thus from the set ((I. 7),(1.9)) we 

obtain for the temperature derivatives 

(I. 33) 

P 
ank - 0  z a i k  - 

P,k 

where 

and where 

is the partial molar entropy. Similarly the derivatives with respect to pres- 

sure a r e  obtained by solving 

P 
ank - 0  z a i k  - 

P? k 

(I. 34) 
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The Lagrangian multipliers hi were given a physical interpretation by (I. 10). 

An analogous interpretation can be given to their temperature and pressure 

derivatives. Recalling that p: is homogeneous of degree zero in np we 

have from Euler's theorem on homogeneous functions 

I 

j 

(I. 35) 

This may be regarded as a variant of the Gibbs-Duhem relation (I. 5). Multi- 

plying the first members of both (I. 33) and (I. 34) by nQ! and summing over 

a,j gives 
J 

(I. 36) 

Alternately these relations could have been obtained directly from (I. 10) by 

differ entiation. 

THE FORM OF THE GIBBS FREE ENERGY ' 

Some pragmatic considerations permit us  to make a considerable simpli- 

fication not only in equations (I. 33) and (I. 34) that a r e  used for calculating 

derivatives but also in all thermodynamic relations. To accomplish this sim- 

plification we will make our first, albeit very minor, assumption. We shall 

assume that each phase contributes additively to the Gibbs free energy or, 

equivalently, that we are neglecting all interactions among the phases 

(I. 37) 
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This is a good assumption so long as the phases a r e  not finely dispersed in 

one another. Henceforth all our calculations will be within the framework of 

the assumption (I. 37). This assumption makes the matrix pYP the direct 

sum of submatrices corresponding to each of the phases. 
Jk  

(I. 38) 

Some of our subsequent discussions will be facilitated if we have some 

idea of the structure of the chemical potential. Therefore, we will briefly 

look at the functional form of the chemical potential. A much more detailed 

presentation is available in the text by Kirkwood and Oppenheim '. 
ical potential for  the ith species in the ath phase can generally be written 

in the form 

The chem- 

(I. 39) 

-CY where 4 represents the contribution from ideal behavior and Ap: represents 

the contribution from non-ideality. The quantity Apa!  is usually called the 

excess chemical potential and often must be obtained from experimental mea- 

surements 2 9  6-7. In some cases it can be estimated theoretically as, for 

example, in the case on non-ideal gases obeying a virial equation of state l3 or 

in the case of Debye-Huckel plasmas 14. The ideal chemical potential, jIp,is 

i 

- characterized by an extremely s imple concentration dependence, the logarithm 

of the mole fraction 

(I. 40) 

In this equation is an arbitrarily selected reference value for the chemical 
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a! potential of the ith species in  the ath phase; n 

ber of moles in the ath phase and is defined by 

represents the total num- 

1. 

The reference values 

(I. 41) 

of the chemical potentials for the gaseous phase (a! = 1) 

are generally taken to be the chemical potentials of the pure species considered 

as ideal gases at a temperature T and a pressure P 

(I. 42) 

1 Here *pi (T) is the ideal gas chemical potential of the ith species at zero 

pressure. This is a convenient choice since * p t  can be calculated from 

spectroscopic constants by evaluating the canonical partition function of sta- 

tistical thermodynamics. Calculations of this type have been performed for 
many species, and the results a r e  available in  convenient tabulations 15 . 
Computer programs l6 a r e  also readily available to perform additional cal- 

culations as new or revised spectroscopic data become available. 

ence value of the chemical potential for condensed phases is sometimes chosen 

to be the chemical potential of the pure species at the same temperature and 

pressure; however, other choices can be made and these are discussed by 
5 Kirkwood and Oppenheim . To generate the usual equilibrium constant r e -  

lations from the chemical potential we need only apply (I. 39) and (I. 40) to the 

chemical reactions (I. 19) by substituting into the equilibrium relations (I. 22). 

We will simplify the notation by assuming that we are only interested in the 

gaseous phase and then suppress the index a!. This gives 

The refer-  
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(nj In)  
= K. AK. ci = I  + l , . . . m )  

2 J J  
(I. 43) 

k = l  

where we've assumed the first 2 species were chosen as components. Here 

r ( T ,  P) is the usual mole fraction equilibrium constant given by 

0 = Z  + I , . . . m )  (I. 44) In K. E -- [pj - h o p k v k ]  
k=l  RT 

while A T  (T, P, n:) has a corresponding definition in  terms of the deviation 

from ideality Api. 

In AK. E -- RT [ I j  -$ ' I k v 4  ( j = Z  + I , . . . m )  (I. 45) 

NUMERICAL SOLUTION OF NONLINEAR EQUATIONS 

In principle, the problem of chemical equilibrium has now been solved. In 

practice, a great deal remains undone, For example, we must still obtain, from 

experiment or theory, the dependence of the chemical potential, p r ,  on the tem- 

perature, pressure and composition variables. This aspect of the problem will 

not be considered and we will assume p y  is known in subsequent portions of the 

paper. Perhaps the problem that cau6es the greatest practical difficulty is the 

solution of the nonlinear equations that describe equilibrium. In general, these 

equations cannot be solved in closed form but must be solved numerically by 

the application of .some iteration scheme. The solution of a system of non- 
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linear equations is not a problem that is unique to thermodynamics but, on 

the contrary, it is a problem that occurs in all a reas  of science and engine- 

ering. A s a  result, the literature of numerical analysis contains a number of 

techniques that can be employed to effect a solution. We shall describe a few 

of these methods; however, we shall not go into their derivation nor shall we 

give any detailed discussion of the numerical aspects of these methods. Our 

primary concern is to briefly present some of the methods that have been suc- 

cessfully used for equilibrium computations in the past and a few others that 

potentially might be used for this purpose in the future. 

The thermodynamic notation of the preceding section is not well suited to 

a discussion of methods for solving systems of nonlinear equations. In this 

section we shall use the more concise notation of matrix algebra. Thus, for 

example, the set of equations ((I. 7), (I. 9)) will  be written as 

- f =f(x)  -- = - 0 (11. 1) 

where f and x a r e  real, N- dimensional column vectors and x represents 

the N independent variables. In our case x would stand for the composi- 

tion variables and possibly the Lagrangian multipliers, the temperature and 

pressure. Broadly speaking, the techniques for solving nonlinear equations 

have been divided into two categories by Householder 17. These categories 

a re  (1) the functional iterationmethods and (2) the descent methods. 

tional iteration reduces the problem of solving a system of nonlinear equations 

to the problem of solving an infinite sequence of linear equations. The descent 

methods reduce the problem to solving an infinite sequence of single, generally 

nonlinear, equations. We first turn our attention to the functional iterations. 

- - - 
- 

The func- 
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FUNCTIONAL ITERATIONS 

Let x* represent the solution of @I. 1); that is, f(x*) = - 0. Then the - -- 
functional iteration is characterized by a vector function g(x) such that -- 

g(x*) -- = x* - (11. 2) 

In terms of this function and some initial estimate, x for  x* we can define 

a sequence of vectors 5 by the formula 
-0’ - 

&+I = g ( Q  (11. 3) 

If 5 is sufficiently close to x* this sequence will converge to x* 17. Al- 

though convergence is thus guaranteed, it is often difficult to obtain an initial 

estimate that is sufficiently close. This difficulty is common to all functional 

iterations, 

- - 

The various functional iterations differ from one another by the choice of 

g(x). -- Perhaps the most widely used iteration of this type is the Newton or  

Newton-Raphson 

formula 

iteration. In this iteration the function g(x) is given by the -- 

- J-l(x)f --- (x) (11. 4) 

Here J(x) is the Jacobian matrix, that is, the matrix formed from the partial -- 
derivatives of f - 

af 
J =, - 
- ax - 

The equations (11.3) and (11.4) can be combined into 
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(11. 5) 

1 -  

from which it is apparent that the iteration is obtained by truncating the Taylor 

expansion of -- f (x) after the first derivative. Although the iteration will converge 

for a sufficiently good estimate, the method has some practical difficulties. Not 

only must one obtain a sufficiently good estimate, which in itself might present a 

considerable problem, but also at each stage of the iteration the Jacobian J - 
must be nonsingular . Additionally, the repeated evaluation of the Jacobian and 

its inverse will require a considerable amount of computation time if the number 

of equations, N, is large. It is possible to somewhat compensate for this last 

difficulty by employing a modified form of Newton's iteration l7-l8. In this  

form of the iteration the Jacobian is not re-evaluated for each iteration but is 

fixed at its initial value. 

A s  a practical matter this form of the iteration should probably only be used 

in the later stages of a calculation. 

Newton's method presupposes that the functional form of f(x) is known 

since one must be able to calculate the Jacobian. When the functions f(x) a r e  

so complex that it becomes impractical to differentiate them or when expres- 

-- 

-- 

sions for the functions andnot known, then Newton's iteration cannot be used. 

The latter situation can ar ise  in thermodynamics when the chemical potential 

is only available in tabular form. In such a case, it is possible to use a gener- 

alized secant method lgm20 which is an example of the so-called multipoint 

iterative methods whose convergence has been discussed by Tornheim 21 . 
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The multipoint iterative methods a r e  characterized by the fact that no deriv- 
I atives a r e  required in the evaluation of g(x). The generalized secant method -- 
I '  is, in effect, Newton's method with an approximate Jacobian. If 5 is the 

current estimate for x* then an approximate Jacobian can be evaluated with 

the aid of N auxiliary points si (i = 1,2,  . . . N) in the vicinity of by the 

for mu la 

- 

(11.7) 

where the matrices af, and hx, are the matrices whose columns a r e  formed 

from the column vectors f and x.  - - 

Thus the generalized secant method is defined by the function 

g(x) = x - (Ax)(Af)-' f(x) -- - -- -- (11.9) 

where the indices on the matrices Ax and Af have been suppressed. This 

method has the advantage that no derivatives of f (x) need be calculated; how- 

ever, this means that when the iteration converges, we have only an approximate 

J(x*). -- Since the Jacobian is needed to calculate the thermodynamic first deriv- 

atives by means of (I. 30)-(I. 34) this means that only approximate values of these 

derivatives can be obtained. 

- - 
_ -  

The last method of the functional iteration type is the method of successive 

substitution 22. It is based on being able to write f (x) in the form -- 
f(x) = x - g(x) -- - - _  
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Thus the function g(x) is defined to be -- 

-- g(x) = x - - -- f(x) (11, 10) 

Thus, in relation to Newton's method, the Jacobian is here taken to be the unit 

matrix. 

DESCENT METHODS 

The solution of thermodynamic equilibrium problems can be regarded 

either as  the solution of a system of nonlinear equations or, as pointed out 

in the comment following (I. 16), as the direct minization of the Gibbs free en- 

ergy G. In thermodynamics the nonlinear equations themselves ar ise  from the 

constrained minimization of G. Thus in thermodynamics there is a very direct 

connection between minimization and the solution of a system of equations. In 

fact the solution of any system of nonlinear equations can be regarded as the 

location of the minimum of some function @(x). If the equations (11.1) arise 

from the minimization of + then 
- 

(11. 11) 

and the connection is immediately apparent. When the functions f(x) a r e  ob- 

tained in some other way, then we can always define a suitable function + by 

-- 

1 T  q(x) = -f Mf  
- 2--- 

(11. 12) 

where f T  is the transpose of f and M is any real, positive definite matrix. 

Because M is positive definite the function +(x), as defined by (11. 12), is 

always positive and vanishes only when f itself vanishes, This, in fact, is 

- - - 

- - 

- 
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the definition of a positive definite matrix. The simplest choice for - M would 

be the unit matrix, in which case +(X) - 
squares of the components of f and is a measure of the error .  In the following 

discussion +(x) - will represent the objective function to be minimized and 

is proportional to the sum of the 

- 

could be either the Gibbs function regarded as a function of the 5, or the 

equivalent of (11.12). 

A review of minimization techniques has been given by Spang 23. We shall 

confine our attention to only a few of the many possibilities. All  of the methods 

that we consider will generate a sequence, 5, of approximations to the min- 

imum, x*, - by the formula 

% + I =  x& + XI& (11. 13) 

The vector 5 is arbitrary except that it must not lie in the surface +(x) = 

constant at the point 5. It specifies a direction of descent while the param- 

eter h determines the size of the step. The methods under consideration dif - 
f e r  in  the choice of s; however, they all essentially determine X by the re- 

quirement that the one-variable function 

- 

(11. 14) 

be a minimum. This is equivalent to determining X by solving the equation 

-. T i  
3 -  

x=x +xu --k -k 
351 

= o  (11. 15) 

where the gradient a+/ax - is the column vector whose components a r e  the par- 
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tial derivatives of q with respect to the components of x. - In principle this 

gives the optimum choice of A .  In practice, however, it is often advantageous 

to use an approximate value for h rather than to devote an excessive amount 

of time to a search for the optimum value. Thus Householder '' suggests 

determining an approximate h by one step of Newton's method applied to (II. 15) 

with an initial estimate of h = 0. Spang 23 suggests some other possibilities. 

One should also recognize the possibility that an approximate value of h might 

be obtained empirically based on experience with related systems of equations. 

There a r e  many possibilities for the choice of a direction vector uk" For 

example, all of the functional iterations discussed previously could be used to 

supply a direction. Thus from Newton's method (11.4) we could take 

-1 u = - J  f - - -  (11. 16) 

to obtain the descent version of Newton's method. Taking u from the method - 
of successive substitutions (11.10) gives 

u = - f  - - (11. 17) 

In general a large number of choices of this type can be written in the form 

u = -Bf - - (11. 18) 

where B is some matrix. This form even encompasses the so-called gradient - 
methods where u is related to a+/ax for either f is already the gradient - - - 
(11.11) or else from (II. 12) aq/ax = J'I'Mf . In particular the method of steep- - - -  
est descent is given by the choice 

u =- 
- ax - 

(11.19) 
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Perhaps the simplest choice of a descent direction is to take u along one 

of the coordinate lines. If one selects the jth coordinate line, it then follows 

from (II. 15) that X is determined so as to make the jth component of the 

gradient equal to zero by changing only the jth coordinate. This method of 

- 

/ r  

operation is known as a univariate or relaxation method. The choice of co- 

ordinate lines can be made in a number of ways. For example, they might be 

I taken in sequence or perhaps they might be chosen so as to reduce the largest 

component of the gradient to zero. 

A s  the final technique for solving systems of nonlinear equations, we will 

briefly consider a method that is basically a descent method but incorporates 

some of the features of the multipoint iterations. It possesses the advantage, 

like the multipoint iterations, of not requiring the calculation of a Jacobian but 

unlike these methods it gives the correct Jacobian when the iteration converges. 

Because of these two properties, it should have a considerable utility in  thermo- 

dynamic calculations. This type of iteration was first proposed by Davidon 24 

and was subsequently refined by Fletcher and Powell 25. Somewhat related 

algorithms were later suggested by Barnes 26, and Broyden 27. A numerical 

comparison of some of these methods was made by Rosen 28, The calculation 

method uses a direction of descent given by (II. 18). For the initial iteration 

the choice of the matrix B is quite arbitrary; however, the matrix for sub- 

sequent iterations is obtained by continually modifying the initial choice so 

that at convergence the matrix becomes the Jacobian, 

- 

PERTURBATION CALCULATIONS 

The foregoing discussion of techniques for solving systems of equations 

has, of necessity, been somewhat brief. However we must caution the reader 
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that although, in theory, convergence can be demonstrated for these algorithms, 

in practice they can encounter convergence difficulties even for relatively sim- 

ple problems. A few interesting examples of simple but ffdifficultff problems 

a r e  given by Turner 29. Difficult problems can be solved with a sufficiently 

good estimate. The problem one must then consider is how to find a good esti- 

mate. Perhaps if one knew the solution to a related problem this solution might 

be used as an initial estimate. This is basically the notion behind perturbation 

theory. Because of the wide class of thermodynamic equilibrium problems that 

can now be solved routinely, the potential for the application of perturbation 

theory clearly exists. To describe this procedure we assume that we have a 

solvable problem that can be continuously deformed into the actual problem and 

that in this deformation process the solution of the solvable problem goes con- 

tinuously into the solution of the actual problem. Thus we consider a system of 

parameter dependent equations 

f(x; E )  = 0 -- (II. 20) 

The particular method of parameterization will be left unspecified; however, 

we will assume that the continuous parameter E is so chosen that 

corresponds to the solvable problem and 

(11.21) 

(11.22) 

corresponds to the actual problem. Since the solution x* is assumed to be 

a continuous function of E ,  we can write 
- 



x* =x*(e) - - 

A Taylor expansion 

X*(E - + AE) 

(11. 23) 

of (II. 23) gives 

dx* d2x* 

de dc2 
A € + - -  ' - + .  . . (11.24) - =x*(e) +- - 

If x*(E) - is known and the derivatives appearing on the right-hand side of 

(II.24jcan be evaluated, then (II. 24) can be used to provide an initial estimate 

for the solution of f(x; E + Ae). This initial estimate can then be refined by 

any one of the iterations described previously. The required derivatives can 

be evaluated. For example, by differentiation of (11.20) with respect to E 

we obtain 

-- 

aft dx* af 
(11.25) 

Solving this  linear equation we obtain 

a f  - dx* 

de a €  
- (11. 26) -- - - J-l(~*(e); E )  - ( ~ * ( e ) ;  E)  

Higher derivatives can be obtained by further differentiation of (11.25) with 

respect to E .  The actual number of terms that must be used in (11.24) depends 

on the nature of the equations being solved and on the size of the increment A e .  

For a sufficiently small increment, it should be possible to use only x*(E). A 

technique similar to the discussion given above was described by Freudenstein 
30 and Roth . 

- 
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LITERATURE SURVEY 

All the information that is necessary for an understanding of equilibrium 

computations has been summarized in the preceeding portions of this paper, 

We could now carry out a perfunctory literature survey merely by pointing out 

that a given author calculated equilibrium compositions by combining a partic - 
ular set of thermodynamic equations with a certain numerical technique. How- 

ever, this procedure admits only a relatively small number of different com- 

binations, a number considerably smaller than the number of papers cited in the 

reference list of this review. The inescapable conclusion is that many of these 

papers must be merely minor variations on a major theme. This is true, but 

it is equally true that it is just this fine structure that converts a theoretical 

method into a practical and workable one. There is no pat answer to the ques- 

tion of what constitutes a practical and workable method, Obviously, the 

method should be reliable and capable of giving the correct answers when 

properly implemented. It seems to u s  that it is the implementation that ul- 

timately decides whether or not a method is to be considered acceptable. A 

technique that is excellent for manual computations might be completely unsuited 

to machine calculation. Similarly, a very general method designed for appli- 

cation to a wide class of equilibrium problems can be expected to be inferior to 

a method tailored for a specific problem when both are applied to the same 

problem. A s  an extreme example of this we could cite the application of an 

iterative method to the simple problem of the dissociation of an ideal diatomic 

gas for which a closed form solution exists. Whenever discussing specific 

methods we shall try to point out their advantages and disadvantages in an  at- 

tempt to delineate their appropriate area of application. 
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We shall t ry  to avoid a discussion of computer programs while looking at 
I 
I 

the various methods of calculation. But because of the availability and wide 

spread use of computers, we should mention some points that are pertinent to 

the philosophy of writing computer programs for chemical equilibrium com- 

putations. The kind of program that one writes is largely influenced by the 

intended application. Let us  suppose that we are faced with the problem of 

doing extensive calculations on a particular chemical system within relatively 

narrow ranges of the independent parameters and further that the equilibrium 

calculations are a significant part of the total computational effort. In such 

a situation it would be judicious to write an equilibrium computation program 

that would minimize the computation time. This means that we would write a 

program tailored to the specific problem in which we would take advantage of 

all the available information, including initial estimates of composition, and in 

addition would perform algebraically, rather than numerically, as many of the 

mathematical operations as is possible. On the other hand, if we had the prob- 

lem of doing calculations on a wide variety of chemical systems with broad 

ranges in the independent parameters, it would be advantageous to write a 

very flexible program with no requirements for initial estimates, built-in safe- 

guards to assure numerical convergence, simplified input, and a large amount 

of internal bookkeeping ability. This approach possesses the advantage that 

one need write and debug only one computer program that is then instantly 

available for a broad range of problems. It also has the disadvantage that the 

computation time for a given chemical system will be somwhat longer than 

that required by a well-written specific program for the same system. We 

ourselves have written a broadly disseminated program of the general vari- 
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ety 31-32. The report by Erickson, et. al. 33 should be consulted as an 

example of the kind of time reduction that is possible with a very specific 

program. This completes our acknowledgment of the existence of compu- 

ters and, at least for the balance of this section, we shall t.ry to ignore them. 

EQUILIBEUUM CONSTANT METHODS 

The early equilibrium calculations were invariably based on the equili- 

brium constant formulation of the thermodynamic equation (I. 43) and were 

generally carried out for gas phase equilibria. Usually the effects of non- 

ideality were neglected by setting AK. equal to unity. Additionally, because 
J 

the moles, ni, appeared in the equilibrium constant not only individually but 

in  the combination n = En. it became convenient to regard n as another 

independent variable. This in turn required that the defining equation for n 

(I. 41) be added to (I. 21) and (I. 43) to form the set of equations determining 

equilibrium conditions for a given temperature and pressure. Because the 

calculations were done manually, there was an emphasis on performing an 

algebraic reduction of variables before attempting a numerical solution. The 

chemical reactions and the associated equilibrium relations were not written 

in the systematic manner (I. 19) and (I. 43) but were written in a manner that 

reflected the authors choice of the important equilibria. We will cite only a 
34 few of the many examples of this method of operation. Traustel , for ex- 

ample, reduced the equations €or the gaseous CHON (carbon, hydrogen, 

oxygen and nitrogen) system to two equations in two unknowns and then solved 

1’ 

these by a Newton-Ftaphson iteration (II. 4). Similarly, Huff and Calvert 35 

reduced the equations for the same system to two working equations but then 

used a graphical method of solution. Doneganand Farber 36, working with 
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the HO system, solved their two working equations by a special purpose 

iteration, The iteration was based on an empirical relationship between the 

estimate for  one of the variables and the residual in one of the equations. 

Martinez and Elverum 37 considered the six element system CHONF plus 

one other halogen. They succeeded in reducing the equations for this  sys- 

tem to two quadratics. These quadratics were solved simultaneously by 

essentially the method of successive substitutions (11.10) in terms of an as- 

sumed value for a parameter that appeared in both equations. Like Huff and 

Calvert, a graphical technique was used by Sachsel, Mantis and Bell 38 to 

evaluate equilibria in the HOBM system. 

The use of equilibrium constants has persisted through the years; how- 

ever, with the introduction of the digital computer the preoccupation with 
actual algebraic reduction waned. Thus, for example, both Goldwasser 39 - 

40 and Villar s 41-42 used equilibrium constants but made no attempt at an 

algebraic reduction of variables. In both cases the method of solution was 

the relaxation method with t,, the extent of reaction, chosen as the inde- 

pendent variables, The function tp of (II. 12) that was being minimized was 

essentially the sum of the squares of the equilibrium relations (I. 22). Villars 

solved the equation corresponding to (II. 15) exactly while Goldwasser suggest- 

ed using a one term Newton-Raphson approximation. 

At a relatively early stage in the history of equilibrium computations, it 

became apparent that the system of equations could be put into a form that was  

suitable for solution by the method of successive substitutions. One way to 

obtain such a form is to work in terms of mole fractions. We will illustrate 

this for ideal, gaseous phase equilibria. The logarithms of the equilibrium 
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constants (I. 43) a re  already in an appropriate form 

1 
In(nk/n) -In K. = o (j = 1 + 1,. . .m) (III. 1) 

ln(n'/n) J 2 vkj J 

The conservation equations (I. 21) and the defining equation for n (I. 41) can 

easily be rewritten as 

(In. 2) 

Now t can be observed tha, (III. 1) expresses all constituents in terms c the 

components while (In. 2), because it is linear, can easily be solved for the mole 

fractions of the components in terms of the constituents. This is precisely 

what is required to apply the method of successive substitutions. Because of 

the form of (111. 1) the iteration requires initial estimates only for the com- 

ponent mole fractions in contrast to the usual situation which requires esti- 

mates for all the variables. This, basically, is the iteration proposed by 
43 Krieger and White . 

The fact that the equations for determining chemical equilibrium can be 

written in  the form (III. 1) and (III. 2) has been used by other people, however 

not with the s uccessive substitutions iteration. Hilsenrath et. al. 44 regard 

(In. 1) as providing the means for effectively eliminating the constituent mole 

fractions although no actual algebraic reduction of variables is performed. 



37 

Their iteration formula for the moles of components can be written for the j 

iteration as . 

th 

(III. 3) 

where Ek are empirically determined numbers between zero and one and where 

qk is defined by 

(111. 4) 

They chose as components the atomic species (v 

garded as a descent iteration because of its similarity to (II. 13). The direc- 

tion of descent is given by (11.18) and - B is chosen as diagonal matrix whose 

= akj). This can be re- 
kj 

elements are Eknk G) /qk GI . The numbers Ek not only play the role of A in  

(II. 13) but also partially determine the descent direction. Since the direction 

and magnitude of the step are ,  in part, determined empirically, no function 

+ need be specified. Scully 45 employs a somewhat related iteration in the 

sense that successive approximations are also generated by a formula akin to 

(II. 13). It is, however, a relaxation process since only one component is al- 

tered at a time rather than altering all of them simultaneously as is done by 

Hilsenrath, Scully determines the step size empirically. 

Algebraic reduction has not disappeared totally f rom the equilibrium com- 

putations scene. Recently Erickson et, al. 33 have revived the method in an 

attempt to devise rapid, special purpose computer programs. They have dem- 

onstrated that, in  principle, it is possible to reduce any ideal gas calculation 
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I 
to the problem of finding the appropriate root of a high order polynomial in  

one variable, They acknowledge that, in practice, the complete reduction is 
l 

well-nigh impossible in a large problem, In relatively simple problems with 

only a few species the reduction can be carried out, and the resulting poly- 

nomial can be treated, for example, by the Newton-Raphson method. Apart 

from the practical difficulties of generating an explicit expression for the 

polynomial from the chemical equilibrium equations, this method is beset 

with severe numerical problems. Wilkinson 46 points out that the roots of 

polynomials can be extremely sensitive to relatively small e r ro r s  in the poly- 

nomial coefficients and, in fact, the computed roots may bear no relationship 

to the actual roots. This is compounded by the fact that in  order to determine 

the equilibrium composition one must find the appropriate root among the many 

false roots that have been introduced while effecting the reduction to polynomial 

form. Thus in all but the relatively simple equilibrium problems this  method 

has little to recommend it. 

Although all of the methods of calculation that we have discussed to this 

point have assumed that the system was  ideal, the effects of non-ideality can 

be easily incorporated using the perturbation technique. Thus we would de- 

fine a parameter dependent equilibrium constant 

In -3 K. ( E )  E In K. 1 - E In AK. J ti = Z  + I , . . . m )  0n. 5) 

where E is the perturbation parameter of equations 01.20) to (11.26). 

The schemes that we have just discussed are,  in principle, applicable to 

any problem, In practice they a r e  best suited to specific problems where one 

can take advantage of the idiosyncrasies of a specific system, The first for- 
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mulation in a notation that was  suitable for a general problem was given by 

Brinkley 47-49. His  procedure was to apply the Newton-Raphson iteration to 

(I. 21), (I. 22), (I. 41) with the assumption that the thermodynamic state was 

specified by assigning the temperature and pressure (I. 23). Shortly afterward 

Huff and co-workers 50 extended it so that the thermodynamic state could be 

specified in terms of any two thermodynamic variables and also suggested some 

minor changes which had important significance for the application of the meth- 

od. The combination of these two techniques was  widely applied by many 

people 13, 329 51-65. The similarity of the Brinkley and Huff iterations per- 

mits u s  to discuss both of them simultaneously. To do this we will have to 

deviate slightly from their original presentations, but our changes will not al- 

ter the significant aspects of the method. 

Our presentation of the Brinkley-Huff method will assume that the thermo- 

dynamic state is being specified by assigning the pressure and enthalpy. That 

is, we will be using equations (I. 21), (I. 22) and (I. 24). In addition, as we've 

already pointed out, the quantities na! appear directly in the ideal chemical 

potential. For this reason it is convenient, but not necessary, to regard the 

nac as additional variables that are related to the n: by (I. 41) rather than to 

regard (I. 41) as the defining equation for the nac. This -- ad h w  introduction of 

p additional variables requires u s  to augment the equations (I. 21), (I, 22) and 

(I. 24) with the p extra equations (I. 41). The ideal chemical potential, jZ:, 

will now be regarded as an explicit function of n?, no, T and P 
J 

(In. 6) - Q - - a !  a! a! 
EJ.i - IJ.i (nj , n , T, P) 

The excess chemical potential, Ap;, will continue to be considered as de- 
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pending explicitlyonly on n? T and P. 
J ’  

a ! a !  ~ p :  = ~p~ (nj , T, P) 

The reason for this dichotomous treatment of the chemical potential is that 

it permits algebraic simplifications in later stages of the development. Finalv, 

for simplicity of notation we shall select the first 1 species of the gaseous 

phase (a! = 1) as the components. 

If we take In n s ,  In na! and In T as the expansion variables then the 

ETewton-Raphson equations (11.5) have the explicit form 

where all quantities in these equations are evaluated in terms of the current 

estimates for  n? na!, and T. The unsymmetric matrix r that appears in J ’  - 
these equations is defined as 
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1 -  
I .  

Because A p Q  is homogeneous of degree zero in np, the matrix - r satisfies 

the two relationships 
j 

(111.10) 

The assumption that Apa!  was to be considered only as an explicit function of 

the nf and not of na! was made in order to retain these useful properties. 

The Newton-Raphson equations (III. 8) represent (p(m + 1) + 1) linear equa- 

tions in a corresponding number of unknowns (note that the first equation 

contains I identities (a! = 1, j = 1,2, . . . I  )). In any problem of practical in- 

terest the actual number of equations could easily approach or  surpass one 

hundred. For this reason pragmatic considerations demand that some reduc- 

tion be made in the number of working equations. Brinkley essentially assumed 

that r could be neglected in (In. 8). We will shortly demonstrate that a reduc- 

tion in the number of working equations can be achieved without this assumption; 

however to display the working equations in their usual form, let u s  neglect r. 
The neglect of r in the first member of (111.8) enables u s  to solve these equa- 

j 

tions for the corrections to the moles of constituents in terms of the compo- 

nents. Substitution into the remaining members of (III. 8) produces the reduced 

number of working equations in the form 
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e(? i=l vijnr) A In 

- A l n n ~  
i=l j - 7 

A l n T ’  

, 2, .PI 

h[E i=l a, j  v i j H r n r y {  A Inn: + 

+[E Crn;/R + Z H r H r n ;  - 
I? (111.11) 

a, j Q, j 
I 

a a  v. .H. n. 
1J J J 

/RT = (Ho - H)/RT -A l n n l  E 
i=l a, j  

where 

These equations can be solved for the component corrections, A Inni, 1 and the 

constituent corrections can then be calculated from the first member of (In. 8), 

again neglecting I?. - 
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Equations 011.11) encompass both the Brinkley and the Huff variations of 

the Newton-Raphson calculation. To obtain the iteration suggested by Brinkley 

we need only make three specializations: (1)ignore the last equation in (In. 11) 

and set A In T to zero in  the other equations; (2) treat .  the A In n: (i = 1,2,  . . . 
and A In na! (a! = 1,2,  . . .p) as independent variables and calculate the constit- 

uent mole numbers from the components and estimates of the equilibrium con- 

stants based on the current compositions; and (3) interpret the logarithmic 

corrections A In x@) as (x @+l) - x@)/x@). To obtain the Huff variant we 

must: (1) retain the temperature as a variable; (2) select atomic species as 

components (v.. = aij , qz = b:); (3) treat both components and constituents as 

independent variables during the iteration; and (4) use all corrections in the 

logarithmic form rather than the linear form. Items (3) and (4) of the Huff ver 

sion a re  quite important from a practical standpoint. For example, the use of 

logarithmic corrections automatically insures the fact that all variables will 

1J 

remain positive if initially chosen to be positive and thus will satisfy the non- 

negativity constraints in the mole numbers n r .  The disadvantage of treating 

only the component moles as independent variables is that one needs rather 

good estimates for the components to obtain a convergent iteration. This prob- 

lem has prompted some authors to devise schemes for obtaining initial estimates 

for  the Newton-Raphson iteration 649 66-67. An alternate approach to this 

problem is to select  as components only those species that a r e  present in major 

amounts. This is not completely satisfactory since it creates the problem of 

changing components during the course of the iteration. This "optimum com- 

ponent" procedure has been used 5 2 9  62, 6\ however, the problem can be handled 

in  a less complicated manner by treating all species as independent during the 
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iteration. This often produces a convergent iteration even with relatively poor 

estimates. This latter method, while less susceptible to divergence, has been 

known to diverge. The divergent cases can be handled by using a descent 

Newton iteration. 

The basic disadvantage of the working equations (111.11) or of their pre- 

decessors (III.8) is the asymmetric treatment of the species. From these 

equations it is obvious that the components are singled out for preferential 

treatment. In the case of (111.11) this is more obvious than true since we dem- 

onstrated 69 that the equations could be put in a symmetric form by a simple 

transformation that eliminates those linear combination terms in (111.11) that 

are component dependent. Introducing a variable ui by the definition 

(i= 1,2, ... I )  ( I E  13) 

and substituting this into (III. 11) gives as the symmetric equations determining 

ui, A In na! and A In T 

A In nil = ui + (Hi/RT)A 1 In T - pi 1 + A  In n 1 

(k = 1 , 2 , . 4  
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The substitution of (III. 13) into the first member of (In, 8), neglecting r, gives 

the corrections to all species in the form 
- 

j = 1 , 2 ,  . . .m 2 
A In na j = - lfy/RT J + g u . v . .  1 11 + (Hr/RT) A In T +  Alnn a ( a . 1 , 2 , . . . P )  

i= 1 ~ 

(111.15) 

This form (III. 14), (111.15) of the Brinkley-Huff iteration is computational su- 

perior to the original formulation because all species are given an equivalent 

treatment. 

FREE ENERGY MINIMIZATION METHODS 

Prior to 1958 all equilibrium computations were carried out using the 

equilibrium constant formulation of the governing equations. In 19 58 White, 

Johnson and Dantzig 70 suggested that equilibrium compositions be calculated 

by "free energy minimization" ~ Their procedure soon captured the fancy 

of some of the people making thermodynamic calculations, and it became 

the basis for a number of computer programs . The world of equilibrium 71-75 

computations was then divided into two camps, the free  energy minimizers, and 

the reactionary equilibrium constant formulaters. It was not long before extrav- 

agant claims and counterclaims of guaranteed convergence were heard from 

proponents of each method. So heated became the controversy that when a panel 

discussion was  arranged to discuss equilibrium computations in 1959 76 , it 
was  necessary to divide the panel into a free energy panel and an equilibrium 

constant panel, To see what it was  that provoked such a controversy let u s  

examine the method of f ree  energy minimization. 

As we did in the discussion of Brinkley-Huff iteration we will deviate some- 

what from the original presentation. This will enable us  to incorporate some 
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subsequent developments and it will also put the method in proper perspective. 

We will formulate the method for the case where the thermodynamic state is 

specified by pressure and enthalpy since this will facilitate a comparison with 

our development of the Brinkley-Huff method; however, it should be clear that 

any two thermodynamic variables will suffice. To obtain the method, weneed 

only apply the descent Newton-Raphson method to the equations (I. 7), (I. 24) 

and the dimensionless form of (I. 9) obtained by dividing the equation by RT. 

The function I) to be minimized may be the Gibbs free energy G to which 

has been added one half the sum of the squares of (I. 7) and (I. 41). It is no 

restriction to require that the estimates for the Lagrangian multipliers ri 

= -hi/RT be taken as zero for each iteration since the multipliers occur 

linearly in (I. 9). Again, as before, we will use the na! as independent vari- 

ables and thus we will add (1.41) to our set of equations and in addition we will 

us  e, except for the ri, the logarithmic form of the variables in the expansion. 

With these conditions we obtain as the Newton-Raphson equations 

CY=1,2, ... 
-(H?/RT> J A In T = - ~ F / R T  J 

(j = 1 , 2 ,  ...3 
CY C Y 0  akjnj A I n n  = bk - bk 

j 

CY n. A In na 
J j 

CY n A  

a! In n. 
J 

In 

+ 

n Ci  = n  - 
i 

(k = 1,2 ,  ... I )  

CY n i 

A In T = (Ho -I H)/RT 

(111. 16) 
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The basic similarity of these equations and the corresponding equations (III. 8) 

of the Brinkley-Huff method is now clear; the only difference occurs between 

the first member of each set. A s  a matter of fact, if (111.8) is written with 

atomic species as components and if we eliminate the vi from (In. 16) by 

using the first L equations of the first member of (111.16) (a! = 1, j = 1,2.. . L )  

we then obtain exactly (III. 8) because a.. = 6.. (j = 1,2, . . . L  ). But this should 

have been obvious from the outset since it is quite immaterial whether the 

Lagrangian multipliers are eliminated prior to linearization or subsequent to 

linearization. It should also be abundantly clear that neither method can have 

any inherent advantage; however, this is not meant to imply that "free energy 

minimization" has no computational advantage. The benefits that exist are 

associated with the fact that no species a re  singled out for special handling. 

This, for example, makes it possible to incorporate the effect of the matrix 

- r into the iteration while still retaining a small set of working equations an- 

alogous to (III. 14). The corresponding development in the case of (111.8) is 

considerably more awkward. Although it is desirable to use - r in the iter- 

ation, it is not absolutely necessary to do so in order to obtain a convergent 

iteration. However, once the equilibrium compositions have been calculated 

and one wishes to calculate the thermodynamic derivatives, it then becomes 

necessary to use r to obtain the correct values for these derivatives. 

11 1J 

- 
The equations that must be solved in order to obtain the thermo- 

dynitmic derivatives Cp, aV/aT and aV/aP from (1.30)-(1.32) are 

very similar to the iteration .equations (111.16). This similarity 
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enables us to give a simultaneous discussion of the procedure for taking account 

of non-ideal effects. The equations for the derivatives with respect to T a r e  

given by the expressions 

011. 17) 

= 0 (a! = 1 , 2 , .  . .p) a! a In na 
a In T 

a In n? 

J a 1 n T  
J - n  n? 

j 

The equations that determine the derivatives with respect to P are 

a i n n ?  a! a i n n "  

a In P 
n F 2 - n  = 0 (a! = 1 , 2 , .  . .p)  c J a l n ~  

j 

Apart from the fact that the coefficient matrix of (III. 16) has one more row 

and column than either (111.17) or  (III. 18), the three sets of equations are " 

identical. To illustrate the reduction to a smaller set of working equations 
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we shall use the more concise matrix notation Mv = w to symbolize any one of i -  -- - 
the three sets of equations (111. 16), (111. 17), or  (111. 18). Further, we shall I 

assume that the matrix M and the column vectors v and w have been par- 

titioned so that the set of equations can be written in  the form 
- - - 

(111. 19) 

The column vector x1 is associated with the variables na! while 3 is 

associated with the remaining variables. If the square submatrix M 

is assumed to be nonsingular then we can write 

j 

- 1 1 - -  - I + - r 

1 = M - ( w  - M  V )  1 1  -11 -1 -12-2 (111.20) 

This expression can now be used to eliminate v1 from the second member of 

(III. 19) to give 

N V  = Y _  -42 

where 

N = M  - M  M - ~ M  - - 2 2  4 1 - 1 1 - 1 2  

Y ’ W . , - 4 1  M M-’w 11-1 

(111. 21) 

(111.22) 

The matrix N and the vector y both contain the inverse of AI l l  which must 

either be calculated numerically or else must be known as a closed form analyt- 

ical expression. Numerical inversion of Mll would defeat our avowed purpose 

of providing a smaller set of working equations analogous to (III. 14) and a 

- - 
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closed form expression of M - l  is not possible under all circumstances. 

However, when the contribution of I' to M can be regarded as a pertur- 

bation, then Mi1 may be replaced by its iterative expansion 

-1 1 

- -1 1 
1 

011.23) 
k=O 

where 

- y o G I  - 
The substitution of (III. 23) into (III. 22) gives as an alternate expression for 

(III. 24) 
k=O k= 0 

where the matrices N(k) and the column vectors are defined by - 

(111.2 5) 

The index k effectively gives the order to which the perturbation matrix r 
appears in the various terms. Therefore, we are now in a position to apply 

- 

conventional perturbation theory to the solution of the reduced set of equa- 

tions 011.21). Writing 

(111. 26) 
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and equating terms in (III. 21) with the same order of perturbation we obtain 

the usual hierarchy of equations 

(0) coi = y(o) - NII; !  - 

4 = 1,2 ,  . . . I  (III. 27) 

These expressions can be used to calculate 5 to the desired order of per- 

turbation. The expression for v1 can then be obtained from 5 by using 

(III. 20). 
I 

7 

(111.28) 

2 
I 

Explicit expressions for the matrices - N@) and the vectors y@) - can be 

readily constructed for the iteration equations (III. 16). These can be written 

in a compact form by first introducing the notation 

and then defining the sequence of symmetric matrices 

I- - - - -  

(III. 29) 

(111. 30) ~ 

. . . .  - . . .  - 
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With this notation we have for N(") 

"~(-1)" 

(111. 
i, k = 1,2, . . .L 

P = 1 , 2 , .  

while the column vector v(~) has the form 
Y - 

(111. 32) 

The expressions for N(") and y(n) were considerably simplified by using the 
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properties (III. 10). The zero order approximation of (111.27) and (111.28) is 

now easily seen to be identical to the modified Brinkley-Huff equations 011.14) 

and (In. 15) when the components of the Brinkley-Huff method are atomic 

species. Equivalently, the identity could be established by writing the free  

energy equations in terms of components. 

The original presentation of the free energy method differed consider- 

ably from our discussion. White et al. 70 derived their equations only for 

the ideal gas phase and minimized the quadratic approximation to the Gibbs 

free energy for an assigned temperature and pressure subject to the mass 

balance constraint (I. 7). Their equations may be obtained from our zero 

order approximation by taking p = 1, deleting the last row and column of 

- N(O) and striking out the last element of y(O), - setting bi equal to by, and 

interpreting all corrections linearly rather than logarithmically. The imple - 
mentation of their version of the free energy method requires that the esti- 

mates always satisfy the mass balance constraints. In principle this  is no 

problem; however, it does cause unnecessary difficulties in practice. These 

a r i se  because round-off e r ro r s  can cause compositions to violate mass bal- 

ance even though the initial estimates satisfied mass balance. Both Levine 

and we 69 indicated how to modify their equations within the framework of 

their derivation. The extension of the White method to multiphases and non- 

ideal systems was done by a number of people 78-81 9 all using the quadratic 

approximation to the Gibbs free energy. We developed the perturbation ap- 

proach to incorporating the effects of non-ideality on both the iteration and 

the calculation of thermodynamic derivatives 14. For the sake of complete- 

ness, we will now give the formulae for calculating the derivatives Cp/R, 

77 



54 

a In V/a In T and a In V/a In P. In all cases the matrices N(”) a r e  the 

same as (III. 31) with the last row and column deleted. The vectors y(n) 

however, differ from (III. 32). For the temperature derivatives y(n) - has 

- 

- ’  

the form 

while for the pressure derivatives it becomes 

(I11 3 3) 

(i = 1 , 2 , .  . .‘> 
y = I , & .  . .p 

(111.34) 

In terms of the solutions to the hierarchy of equations (In. 27) and (In. 28) the 

expressions, (I. 30), (I. 31) and (I. 32), for the thermodynamic derivatives be- 

come 

Cp/R = 
r=O (111.35a) 
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00 

(In. 35b) 

In addition to these derivatives with respect to T and P we could also calcu- 

late derivatives with respect to the independent parameters b:. These would 

be significant in the application of thermodynamics to fluid dynamical problems 

when one assumes that the flow field is characterized by local thermodynamic 

equilibrium. 

will not reproduce them here. 

The resulting formulae are similar to (III. 35) and therefore we 

The free energy method that we have just discussed was  shown to be ades- 

cent Newton method with the objective function chosen to be essentially the Gibbs 

free energy. This choice of the obj ectivefunction could easily be supplanted by any 

other suitable test function, and thus it seems inappropriate to label the meth- 

od by a particular choice of test function. There is another method, due to 

Naphtali 82-83 that perhaps seems more worthy of the name, H e  regards the 

Gibbs free energy as a function of the extent of reaction variables t;, and then 

uses the method of steepest descent to minimize G for assigned values of I 
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temperature and pressure. The components of the gradient vector a r e  just the 

equilibrium constant expressions as is apparent from (I. 15) =E prA7;. 

a, j a 5, 

Because the 5, a r e  essentially used as the independent variables, the esti- 

mates for  the composition variables must satisfy the mass balance constraints. 

This causes the same problems here as in White's original version of the de- 

scent Newton calculation. This calculation suffer s from the same drawbacks 

that any equilibrium constant method must endure; that is, one must write 

appropriate chemical reactions and one must make a judicious choice of com- 

ponents. Snow 84 has suggested two changes to improve the method. The 

first of these is to use a weighting matrix - B (II. 18) that is diagonal with the 

rth diagonal element being chosen as the smallest mole number in the r th 

reaction. Second, he suggests that vqparallel reactions" be written which, in  

effect, means making a more appropriate choice of components. 

Dobbins 85 has used what could be considered a univariate version of 

NaphtaliPs iteration. The direction of descent is along the coordinate line tr 
that has the largest component of the gradient. In addition he uses atomic 

species as components and uses an approximate form for the Gibbs f ree  en- 

ergy during the calculations in order to reduce the calculating time. 

Story and Van Zeggeren 86 used a slightly different approach in the cal- 

culation of equilibrium compositions of an ideal gaseous phase at an assigned 

temperature and pressure. Instead of working with the moles ni (the phase 

index has been suppressed because only the gas phase is considered) they 

essentially introduce logarithmic variables by defining variables zi by the 
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relationships 

Z o i  n. = n. e 
1 1  

The ny plays the role of the current estimate of composition. They obtain 

a set of equations analogous to (I, 7) and (I. 9) by minimizing the Gibbsfree en- 

ergy subject to the constraints that - z is a unit vector and that mass-balance 

is preserved. These equations a r e  then solved for - z by one step of a Newton- 

Raphson iteration with z = 0 as an initial estimate. To facilitate the com- 

putations of - z some terms in the Newton-Raphson equations a re  neglected. 

The length of the step in the direction - z is then obtained so as to minimize 

the Gibbs free energy. 

- 

We've gone into considerable detail in the exposition of methods for cal- 

culating equilibria in  the presence of chemical reactions, Concomitantly we*ve 

slighted the calculation of phase equilibria and ignored the problems associ- 

ated with obtaining solutions to (I. 26) and (I. 27). However, when thermody- 

namic data a r e  available, the same kinds of calculational methods can be ap- 

plied t o a e  computation of phase equilibria as are used in the calculation of 

reaction equilibria. The only real difference is that in phase equilibria each 

species is a component whereas in reaction equilibria some species are com- 

ponents and others a re  constituents. 

This concludes our review of calculation methods; however, we still wish 

to express our opinion on what is the best method of calculation. We feel that 

any method of calculation that can be made reliable is a good method when 

equilibrium compositions a r e  the only concern. If, however, thermodynamic 

derivatives must also be calculated then the scale shifts strongly to the descent 



58 

Newton method. In particular we mean the iteration equations in the form 

(111.16) or the reduced form (III. 27) and (III. 28). 

the iteration and the calculation of derivatives are cast in the same form. With 

the other iteration methods, it is necessary to write one program to calculate 

compositions and another to calculate the derivatives since these can only be 

calculated from (III. 17) and (III. 18) or their counterparts in the Brinkley-Huff 

calculation. The Brinkley -Huff equations for calculating derivatives are iden- 

tical to (III. 17) and (III. 18) in the ideal case; however, when non-ideality must 

be taken into account, then (III. 17) and (III. 18) a r e  preferred because they lead, 

in a relatively simple manner, to reducedworking equations. It might be 

argued that thermodynamic derivatives are relatively unimportant and that when 

they a r e  required they can easily be approximated by the non-reacting contri- 

butions to (I. 30), (I. 31), and (I. 32). Thus it would seem to indicate that the 

choice of a method based on its ability to calculate derivatives has no signif- 

icance. Such an argument is fallacious on both counts. First, thermodynamic 

derivatives a re  significant for many applications of thermodynamics. Second, 

we will show shortly, by numerical example, that in many cases the contri- 

butions of the reactive part far exceed the non-reactive contributions to the 

thermodynamic derivatives. 

The reason for this is that 
5 

EXISTENCE OF SOLUTIONS 

Our discussion of the numerical methods that can be used to generate solu- 

tions of the thermodynamic equations has completely ignored the possibility 

that these solutions might not be unique. That is, such solutions could be 

either global minima or  else they might merely be local minimaof the Gibbs 

f ree  energy, Thermodynamically the local minima correspond to the so-called 
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metastable states while global minima correspond to true equilibrium states. 

Such a question, while important, cannot be given a general answer because 

the answer depends upon the shape of the Gibbs free energy surface for 

the system under consideration. The Gibbs free  energy varies from sys-  

t9m to system because it reflects the varying degree of non-ideality present 

in each system. A definitive answer can only be given for ideal systems for 

which an analytical expression for the Gibbs function is known. Hancock and 

Motzkin 87 investigated a system composed of an ideal gaseous phase and pure 
I 

Condensedphases while Shapiro and Shapley 88 examined a system in which 

all phases were ideal. The conclusion in these studies of ideal systems is 

that if a solution exists it will be unique. 

A PP LICA TIONS 

The previous sections have reviewed the thermodynamic relationships and 

numerical techniques which permit the calculation of equilibrium compositions, 

thermodynamic properties, and thermodynamic first derivatives for mixtures. 

Theoretically calculated properties have been used in a wide variety of practical 

applications in chemistry and chemical engineering such as the analysis and 

design of chemical processing equipment, heat exchangers, steam power plants, 

engines, turbines, compressors, nozzles, and shock tubes. 

The usefulness of theoretical thermodynamic properties in predicting actual 

results depends largely on how closely the assumptions used in the calculations 

approximate physical reality. In some cases significantly different values may 

be obtained from various assumptions. In this section a few examples have been 

selected (a) to illustrate the calculation and use of thermodynamic properties 

and (b) to point out differences due to several assumptions. These examples 
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include (1) calculation of flametemperatures, (2) calculation of specific heat 

and other derivatives, (3) isentropic expansion, (4) use of derivatives to pre- 

dict effect of change of an initial condition on some final condition of a thermo- 

dynamic process, and (5) use and effect of a convergence control factor A .  

Numerical data, which we will use to illustrate the examples, a r e  given 

These tables a r e  direct computer output and contain some in Tables I to IV. 

notation to the left of the numerical data which is intended to be similar to that 

used in this paper, but whose similarity is not always immediately obvious. 

This lack of similarity is due to the fact that the printer does not contain Greek 

letters, lower case letters, and subscripts. Thus, for example, Po/P appears 

in the tables as PO/P and Cp as CP. Chemical formulas in the tables also 

differ somewhat from their usual representation. Each chemical element in  

the chemical formula of a species is followed by a numerical value even when 

it is unity (as in equation (I. S)), and the phase is indicated between parentheses. 

For example, gaseous H20 is given as H201(G), We will clarify other notation 

in these tables during subsequent discussion. 

All  the examples selected a re  for one phase, ideal gas systems. Before 

proceeding with the examples it would be well to clarify what we mean by an 

ideal gas. The chemical potential of an ideal gas jT: is given by equation (I. 40). 

For this gas the partial molar volume is 

vi  = RT/P (IV. 1) 

Equation (IV. 1) together with equation (I. 29) gives the familiar equation of state 

P V  = E n i R T  = nRT 
i 
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Equation (IV. 2) applies to an ideal gas in the sense that no interparticle 

forces are assumed to exist. There is no restriction, however, as to whether 

the ni remain constant or a r e  variable as a result of a change in system tem- 

perature and/or pressure. Thermodynamic texts usually assume ideal gases 

to be only those for which the ni in equation (IV. 2) remain constant or, equiv- 

alently, those for which the internal energy U satisfies 

(IV. 3) 

The only criterion necessary for a gaseous mixture to be considered ideal 

is equation (IV. 2). A gas which, in addition to equation (IV. 2), also obeys 

equation (IV. 3) is a special case of an ideal gas. We will refer to ideal gaseous 

mixtures which obey both equations (IV. 2) and (IV. 3) (ni constant) as nonreac- 

ting; while those mixtures to which equation (IV. 2) applies but equation (IV. 3) 

does not (ni variable), we will refer to as reacting. 

CALCULATION OF FLAME TEMPERATURE 

Theoretical flame temperatures a r e  u s  eful for many engineering appli- 

cations. They indicate the maximum temperature at which thermal energy 

released during chemical reactions will be available for conversion to other 

energy forms such as kinetic energy or work, and they also indicate possible 

problems relating to materials and cooling. 

Equilibrium compositions and adiabatic flame temperatures for specified 

reactants may be obtained from the solutions of iteration equations (III. 14) or 

the first member of (III. 27). (The second member of (III. 27) is identically zero 

for the case of ideal gases , )  However, the results so obtained depend consid- 
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erably on which species a r e  assumed to exist in the reacted mixture. For 

example, for a stoichiometric mixture of H2(g) and 02(g) at a temperature 

of 298.15' K, the combustion temperature is calculated to be 4998' K if 

H 2 0  is assumed to be the only combustion product. If, however, other lrpecies 

such as H, H2, H 0 2 ,  0, O2 and OH a r e  also assumed to exist and the com- 

bustion pressure is assumed to be 50 atmospheres, the combustion temperature 

is calculated to be 3636' K. The results for this particular calculation a r e  

shown in the first column of Table I corresponding to the pressure ratio P0/P 

= 1. Other parts of this table and Table 11 will be discussed in the later ex- 

amp1 e s . 
The conclusion to be reached from this example is that one should include 

as possible constituents all species which a re  considered likely to be signif- 

icant for some set of conditions. Unfortunately, for complex systems it is 

difficult, if not impossible, to predict - a priori which species a r e  significant 

for all possible conditions. For example, in the C, H, 0, N, F, C1 system, 

we might initially consider the 69 gaseous species indicated in Table III. De- 

pending on the various atom ratios which might be selected and the temperature 

and pressure defining the thermodynamic state, some of these species will 

sometimes be significant and other times insignificant. 

This is the type of situation for which the general computer programs dis- 

cussed in section I11 a r e  particularly well suited, in that - a priori decisions do 

not have to be made as to which species to include or  exclude. For example, 

consider the reaction of perchlory1 fluoride (C103F) with unsymmetrical di- 

methyl hydrazine (C2H8N2). The results for the stoichiometric reaction of 

C2H8N2 + 2C1o3F are given in Table 111 for a pressure of 1 atmosphere and 

for several temperatures from 500' to 5000' K. Of the 69 species considered, 



63 

22 have a mole fraction greater than 0.000005 for a least some of the specified 

conditions. At the two lowest temperatures selected (500' and 1000° K), only 

the five most stable species have a mole fraction greater than 0.000005. 

CALCULATION OF SPECIFIC HEAT AND OTHER DERIVATIVES 

Thermodynamic derivatives have many applications in  chemical processes. 

For example, specific heat, which is one of the most commonly used thermo- 

dynamic derivatives, appear s in applications such as  heat transfer calculations, 

isentropic or  isenthalpic relationships, or shock wave parameter calculations. 

A s  will be made apparent by the discussion and numerical examples that fol- 

low, the assumption of reacting or nonreacting mixtures may affect consider - 
ably the computed values of thermodynamic derivatives. In addition, as we will 

show in later sections, relationships involving these derivatives which are often 

valid for nonreacting mixtures may not be valid for  reacting mixtures, 

A knowledge of specific heat and two other first derivatives such as 

(aV/ aT), and (aV/ aP)T permit one to obtain relationships among all thermo- 

dynamic first derivatives by use of tables such as devised by Bridgman '. WE! 

will first give some discussion relating to the evaluation of these three deriv- 

atives and then give some numerical examples to illustrate differences in  values 

between reacting and nonreacting mixtures. 

Expressions for  evaluating Cp, W/aT and aV/aP a re  given in equations 

(I. 30) to (I. 32). Values of an;/aP which are needed in these equations may 

be obtained by solution of equations (III. 17) and (III. 18). Alternatively, ex- 

pressions for  Cp and the volume derivatives in logarithmic form, a In V/a In T 

and a In V/a In P, are also given in equations (III. 35). Since we a r e  dealing 

only with ideal gases in our examples, we will suppress the index a! and we 
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will  need just the zeroth order derivatives in equation (In. 35); i. e . ,  

anlO)/a In T, (a In n/a In T)(O), &rlO)/a In P, and (a  In n/a In P)(O). These 

zeroth order derivatives may be obtained from the solution of the first mem- 

ber of equation (111.27) where - N(O) is given by (III. 31) and y(O) - by (111. 33) 

and (III.34). 

Prior to solving equations (III. 17) and (III. 18) (or the first member of 

equation (III. 27)) an explicit equation of state is needed in order to obtain 

the VF. For the case of gases only (a! = l ) ,  Michels l3 has evaluated the 

Vi for a non-ideal equation of state, For gases behaving ideally, equation 

(IV. 2) applies. 

1 

For the case of a nonreacting gas obeying equation of state (IV. 2) and equa 

tion (IV. 3), equations (I. 30) to (I. 32) become 
m 

cP =E C.n. 
1 1  

i= 1 

(a lnV/a In T)P = 1 (IV. 4)  

(a In v/a In P)T = -1  

The logarithmic form of the volume derivatives was selected to indicate per- 

centage changes between reacting and nonreacting mixtures in the numerical 

examples which follow, 

The data in Tables I, 111, and IV illustrate the differences in magnitude 

between derivatives for reacting and nonreacting mixtures. The data show 

that for the same temperature, pressure, and equilibrium compositions two 

sets of values exist for these derivatives. The first set of values is for reac- 

ting mixtures and is obtained from the contribution of both terms in equations 
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(I. 30) to (I. 32), whereas the second set is for nonreacting mixtures and in- 

cludes the first term only (eq. (IV.4). The differences in these two sets may 

be large or small depending on the contribution of the second term. Thus in  

Table 111, at T = 500' K, the two sets of derivatives are equal, but at T = 

3500' K the values for Cp are 2.91166 and 0.38301 cal/gm°K for reacting 

and nonreacting mixtures respectively. 

Table IV is given to further illustrate that these differences may be 

dramatically large. The data in Table IV are for a stoichiometric H 2 - 0 2  

mixture at a pressure of 0.001 atmospheres and at several temperatures 

from l6OO0 to 3200' K. The largest differences occurred at T = 2600' K, 

where values for Cp a r e  23.61233 and 0.76922 cal/gm°K for reacting and 

nonreacting mixtures respectively. Thus, in  this instance, the contribution 

of the second term in equation (I. 30) due to composition changes produced by 

a change in temperature is many times greater than the contribution due to 

the heat capacities of the equilibrium species at the given temperature. Sim- 

ilar large differences due to the assumption of reacting or nonreacting mix- 

tures are also found in calculated values of heat conductivity. Svehla 89 gives 

an extensive tabulation of thermodynamic and transport properties for the 

H 2 - 0 2  system. Large differences, although not as dramatic as the one just 

illustrated for  specific heat, a r e  also found in the volume derivatives in 

Table IV. 

The existance of two sets of derivatives may lead one to ask which set is 

'tcorrectTt. Unfortunately, thermodynamics cannot settle the question inas- 

much as the correct answer is determined by the kinetics of the reactions in- 

volved. The two sets of values represent the extreme limits of infinitely fast 
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reactions and infinitely slow reactions, If a process is such that the important I 

reactions involved have time to reach equilibrium or near -equilibrium, then 

the reacting values are probably more nearly correct; contrarily, for slow 

reactions, the values of the nonreacting mixture are probably preferable. For 

intermediate situations, neither assumption may be satisfactory and calculations 

using rate constants should be made 90 . 
ISENTROPIC PRO CE SSE S 

Isentropic processes represent a good approximation to many actual pro- 

cesses. They a re  used in  thermodynamic cycle analyses involving expansions 

or compressions, in various flow processes such as flow through a nozzle, or 

in the calculation of parameters such as the velocity of sound. In analyses 

involving isentropic processes, one often would like to predict conditions at 

the end of a process from a knowledge of conditions at the beginning of the pro- 

cess. For example, knowing the pressure and temperature or pressure and 

volume at the beginning of a process, one might like to know the temperature 

or volume corresponding to an assigned pressure at the end of the process. 

Relationships between temperature, pressure and volume for an isen- 

tropic process involving a nonreacting ideal gas are found in any elementary 

thermodynamic textbook. These relationships include the following: 

and 

(IV. 5) 

PVY = POVOY 

where 
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Y = cp/cv (IV. 7) 

In equations (IV. 5) and (IV. 6), y is assumed to be constant or an average 

value between the initial and final states of the process, Another common 

expression involving y, which is also based on an isentropic relationship, is 

for the velocity of sound 

a = Jz (IV. 8) 
~ 

Here n must be taken as the moles per unit mass. 

Equations (IV. 5), (IV. 6) and (IV. 8) usually give reasonably accurate r e -  

sults for nonreacting ideal gas mixtures, Unfortunately, because of their 

ubiquitousness in the literature, these equations a r e  often mistakenly used 

for reacting ideal gas mixtures for which they do not apply. We will first 

present relationships that a r e  similar in appearance to those of equations 

(IV. 5), (IV. 6) and (IV. 8) and which do apply for reacting as well as nonre- 

acting mixtures. We will then illustrate these relationships with some nu- 

merical examples. 

To obtain these relationships we will need to evaluate the two isentropic 

derivatives ( a In T/a In P)s and (a In P/a In V)s in terms of Cp, 

(a In V/a In T)p, and (a In V/a In P)T: 

(IV. 9) 

and 
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a In P cP 
(a In cvt In v h  

a In P 

where 

(IV. 10) 

(Iv. 11) 

Equation (IV. 10) may be written 

ys = - , / ca  In v/a In P)T (IV. 12) 

where 

(IV. 13) 

The calculation of (a In P/a In V)s permits one to evaluate the velocity 

of sound according to the relationship 

(IV. 14) 

where p is density. 

In the case of a nonreacting gas, the relationships in  equations (IV.9), 

(IV. lo), and (IV. 11) reduce to 

(IV. 15) 
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(IV. 16) 

C p  - C v  = R (IV. 17)  

Integration of equations (IV. 9) and (IV. lo), assuming (a In T/a In P)s 

and (a  In P/a In V)s are constant or represent some mean value over the 

interval of integration, and using the identity of equation (IV. 13) gives 

P V Y S =  POVO Y S  

(IV. 18) 

(IV. 19) 

For practical applications, only the exponent at the initial point may be avail- 

able for use in equations (IV. 18) and (IV. 19). 

We may write equation (IV. 14) as 

a = ,/ysnRT (IV. 20) 

Here, as in (IV. 8), n must be on a per unit mass basis. From the definitions 

of equations (IV. 15) and (IV. 16), it may be seen that equations (IV. 5), (IV. 6) 

and (IV. 8) for nonreacting mixtures a re  just special cases of equations (IV. 18), 

(IV. 19) and (IV. 20), respectively. 

We will use the data in Tables I and 11 to illustrate the use (and misuse) 

of equations (IV. 5) and (IV. 18) and also equations (IV. 8) and (IV. 20). Table I 

presents the data for stoichiometric H2-02 at several specified pressures 

and at constant entropy. These data represent an isentropic process where 

the data in each column a r e  the equilibrium properties at the temperature and 
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pressure shown. Table I1 presents similar data to that of Table I with the 

important difference that species composition is assumed fixed (nonreacting) 

for all the tabulated columns. The fixed composition is taken to be that 

corresponding to equilibrium composition in  the first column of Table I 

(T = 3636' K) and is shown again at the bottom of Table II. 

It may be noted that for nonreacting mixtures the values in  each column 

for the pair y and ys given in Table I are equal as are also the values for 

the pair (a In T/a In P)s and (y  - l ) /y .  (In Tables I to IV, y is labeled as 

GAMMA, ys  as GAMMA(S) and (a  In T/a In P)s as @LT/DLP)S). This is 

to be expected according to equations (IV. 15) and (IV. 16). In contrast to this, 

the corresponding pairs of derivatives for reacting mixtures (defined by equa- 

tions (IV. 9) to (IV. 13)) vary considerably as may be observed in Table I. 

Let us  now consider the problem of estimating the temperature which would 

result from an isentropic expansion over a pressure ratio Po/P of 50, as- 

suming that we a r e  starting from the first point in Tables I and II. For the 

nonreacting mixture, from Table I1 and using equation (IV. 5), we obtain 

T = 3636(1/50) O* 16636 = 1896' K 

Considering the long extrapolation from 3636' K, the estimate of 1896' K 

compares reasonably well with the accurately calculated value of 1826' K 

given in Table II. 

For the case of a reacting mixture, we will start from the same point as 

in the previous example but will now use the data of Table I. If equation (IV. 5), 

which we have just illustrated for a nonreacting gas, were mistakenly used to 

estimate T for a reacting gas (using the equilibrium value of ( y  - l ) /y  = 

0.15908), the result would be 



This estimate of 1952' K compares very poorly with the accurately calculated 

value of 2613' K given in Table I. If, on the other hand, the correct formula 

(IV. 18) were used, we obtain 

T = 3636(1/50) O* 08830 = 2574O K 

This estimate of 2574' K compares well with th, acl urately calculated valu 

of 2613' K. 

We will now look briefly at the values of velocity of sound for stoichio- 

? 

metric H 2 - 0 2  in  Table IV. Velocity of sound (or Mach number) appears in 

applications such as the determination of shock wave parameters 91 or  det- 

onation velocities 92. Values for nonreacting mixtures are obtained from 

equation (IV. 8) using y ,  and for reacting mixtures from equation (IV. 20) 

using y 

nonreacting and reacting mixtures respectively. If equation (IV. 8) were 

mistakenly used for the reacting gas (using y = 1.32619 instead of ys = 

1.09756), one would obtain the incorrect value a = 1790 m/sec. 

For example, at T = 2600' K, a = 1843.3 and 1628.6 m/sec for S' 

The previous illustrations indicate the need to understand the circum- 

stances under which approximate relationships such as equations (IV. 4) and 

(IV. 8) are useful and also when they should carefully be avoided. 

EFFECT OF CHANGE IN INITIAL CONDITIONS ON END POINT OF A PROCESS 
93 We have previously discussed some thermodynamic derivatives which 

deal with the effect of a change in initial conditions on the end point of a pro- 

cess. The following discussion summarizes the pertinent parts of that pre- 

sentation and gives some additional derivatives, 
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A s  discussed in the first section of this paper, all thermodynamic prop- 

erties of a system of known composition can be specified uniquely in terms of 

any two thermodynamic functions, say a and 6 which can be regarded as the 

coordinates of a two-dimensional space. At any point (a, p), not only are all 

the thermodynamic properties of the system determined, but it is also pos- 

sible to determine the rate of change of these properties along some curve in 

(a, p)  space. If, for example, + is a third thermodynamic function, the deri- 

vative (ap /aa )  expresses the rate of change of p with respect to a along 

a curve of constant +. This partial derivative is the usual thermodynamic 

first derivative which appears in thermodynamic textbooks and which we have 

discussed so far in this paper, 

+ 

By a process in thermodynamics we mean that a system originally at some 

point (ao, Po) has moved to a new point (a, p)  where (a, p)  may differ by an 

infinitesimal or  by a finite amount from (ao, Po). An infinitesimal process can 

be completely characterized by a derivative of the form (ap /aa)  
+* 

process can be specified by giving a starting point ( ao, Po), a path (say a curve 

of constant +), and one of the coordinates of the end point CY. For a given path, 

the only independent variables of the process a re  the coordinates of the initial 

point (CY , p ) and a coordinate, say a, of the final point. The other coordin- 

ate of the final point, p, and all other thermodynamic functions are dependent 

variables in the process. 

A finite 

0 0  

Let cp be any dependent thermodynamic variable associated with the end 

point of a finite process. The rates of change of 4p with respect to the inde- 

pendent thermodynamic variables of the process are of two different types. For 

a change in CY, the usual type of derivative (i34p/aa) is needed. However, for + 
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a change in one of the coordinates of the initial points, derivatives of the type 

(aq/aa0)$ and (aq/ap ) a r e  needed. Expressions for the latter type of 

derivative will now be obtained. 
O a. 

For a process taking place along a curve of constant + 

Whatever change in q0 results from a change in  the initial point (ao, Po) 

must be equal to the change in +. This may be expressed in differential 

form as 

(IV. 22) 

Imposing alternately the conditions of constant a. and constant Po gives 

the following two desired expressions for the partial derivatives of a function 

at the end point of a process with respect to the initial coordinates: 

- 

(IV. 23) 

(IV. 24) 

In equations (IV.23) and (IV. 24) all the derivatives in the right-hand side except 

(aa/ap ) a r e  the standardthermodynamic first derivatives and 

canbe immediately evaluated. The two exceptions can be evaluatedfor a specified 

and (aa/aa ) 
O a. O PO 
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form of a relation which expresses the end point of aprocess in terms of the initial ’ 

point 
(IV. 25) a! = @(a! 0’ Po) 

Two forms of Equation (IV. 25) a r e  considered in this paper: a! = kl  and 

a! = k a! 

and (IV. 24) reduce to 

where k l  and k2 are constants. For a! = k equations (IV. 23) 2 0’ 1’ 

For the particular choice a! = k2ao, equations (IV. 23) and (IV. 24) give 

It may be seen that the right-hand sides of equations (IV. 2 

are identical. 

(IV. 26) 

(IV. 27) 

(IV. 28) 

(IV. 29) 

) and (IV.28) 

Two common processes to which equations (IV. 27) to (IV. 29) apply are 

isentropic and isenthalpic. For an isentropic process we can make ,the fol- 

lowing associations: qo = So and q = S. In addition, we can use temperature 

and pressure to specify the thermodynamic state and therefore make the fol- 
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lowing additional associations: Po = T , a! = P 

Equations (IV. 27) to (IV. 29) then become 

a! = P, and a0/a! = Po/P. 
0 0  0' 

(IV. 30) 

(IV. 31) 

(IV. 32) 

Equations (IV. 30) to (IV. 32) have been evaluated for  (P = In T, H, and 

In V differentiated with respect to In Po and In To and the results are 

given in Table V. 

For an isenthalpic process we can make the same associations as in the 

previous case except that now +o = Ho and ap = H .  For this case, equations 

(IV. 27) and (IV. 29) become 

(IV. 33) 

(IV. 34) 
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I '  
(IV. 35) 

Equations (IV. 33) to (IV. 35) have been evaluated for q = In T, S, and 

In V differentiated with respect to In Po and In To and are also given in 

Table V. 

Changes in In q due to a change in initial conditions can be estimated by 

using the first term in a Taylor's expansion; that is, 

A l n p =  2 A l n P  + 2 A l n T o  fin a In p0 ) g::T) 
(IV. 36) 

Either correction or both may be used in (IV. 36). 

In Table V, numerous expressions appear which involve groups of terms 

such as PV/T or  PV/TCp. For ideal gases, the equation of state is given 

by (IV. 2), i. e . ,  PV/T = nR. If H is given in cal/gm and Cp and S in 

cal/gm°K as in Tables I to IV, then R = 1.98726 cal/mole°K. The volume 

derivatives needed to evaluate the expressions in Table V are given in Tables 

I to IV using the following notation: (a h V / a  In T)P is @LV/DLT)P and 

(a In v/a In P)T is @LV/DLP)T. 

One numerical example will be given to illustrate use of these derivatives. 

We will use the data in Table I which a r e  for an isentropic process. The prob- 

lem may be stated as follows: Starting with data for an initial point of Po = 

50 atm and To = 3636' K and a final point of P = 1 atm and T = 2613' K, 

calculate the temperature at P = 1 atm for an isentropic expansion from 
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Po = 25 atm and To = 3636' K. This involves the derivative 

(a In T/a In po)To, p' Using the expression in  Table V for equation (IV. 30) 

with q = In T and the data from Table I we obtain 

From (IV. 36), with In q = In T and A In To = 0, 

A In Po = - 0.12423(-0.69315) = + 0.086110 ('" ')To, p 
A l n T =  

In T = In 2613 + 0.086110 = 7.95435 

T = 2848' K 

The estimate of 2848' K compares fairly well with an accurately calcu- 

lated value of 2820' K. 

ITERATION AND CONVERGENCE 

A discussion was given in Sections I1 and 111 of various computational I 

methods for obtaining chemical equilibrium compositions and the problems of 

obtaining convergence in  iterative calculations. With the exception of the 

trivial case for which a closed form solution exists, each computational method 

~ 

uses a set of iterative working equations. A s  a result, in order to insure con- 
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vergence, each iterative method must be concerned with controlling the step 

size of corrections and/or with obtaining good initial estimates. 

In this section we will give an example to illustrate the iterative process 

which starts with arbitrary initial estimates. For this purpose we have chosen 

the method and program with which we are most familiar 31-32 and which were 

used to obtain all of the numerical results given in the tables, This descent 

method uses the Newton-Raphson iterative equations (III. 14) with atomic species 

as components (or, for  the case of ideal gases, the first part of equation (III. 27) 

with N(O) and y(O) given by equations (III. 31) and (III. 32)). This method re- 

quires no special initial estimates for composition (an arbitrary estimate is 

used by the program) and no constraints on mass balance or equilibrium re- 

lationships during iteration. 

The problem selected is the determination of the equilibrium composition 

of a stoichiometric mixture of a hydrocarbon (CH2)x and elemental oxygen O2 

at a temperature of 300' K and a combustion pressureof P = 0.01 atm. We real- 

ize that little chemical intuition is required to permit one to correctly assume that 

the significant gaseous species resulting from this reaction would be C02 and 

H20 .  However, the point of this example is not to select the best method of 

solution but rather to show that convergence is possible using arbitrary esti- 

mates which may be very poor. 

The course of the iteration will be indicated by two parameters: (1) the 

function q (equation (II. 12) with - M taken as the unit matrix), and (2) the 

f ree  energy per gram of the mixture. For convenience we will call rc/ the 

e r ro r  parameter. In addition, we will discuss the step size control param - 
eter X (equation (11. 13)). 



79 

A brief discussion of the control factor h was  given in  Section I1 where 

we pointed out that an optimum h could be obtained by minimizing q. Fur- 

ther, in Section 111 we indicated that an optimum h could also be determined 

by the Gibbs free energy to which has been added one half the sum of the squares 

of (I. 7) and (I. 41). However, for  observing the course of iteration, G alone 

is adequate. We use an empirically determined h such that 

l A l n n l < 2  - (IV. 37) 

A ln(ni/n) < 2 for  h(ni/n) > - 18. 5 (IV. 38) - - 

A ln(ni/n) - < - 9.212 - ln(ni/n) for ln(ni/n) < - 18. 5 (IV. 39) 

For each iteration, the restrictions given by equations (IV. 37) and (IV. 38) 

limit the number of moles n and the mole fraction of each currently signif- 

icant species (ni/n > - to an increase < e 2 . Equation (IV. 39) limits - 
the mole fraction of each currently insignificant species (ni/fi < - 10- 8 ) 
from becoming larger than - loe4. Restrictions of the type given by equa- 

tions (IV. 37) to (IV. 39) a r e  necessary to control the overcorrecting which 

might otherwise occur when the current estimate is far from the final solu- 

tion. 

The error  parameter q is composed of three terms which show the com- 

bined er ror  in mass balance, number of moles, and chemical potential 
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The Gibbs free  energy per gram of the current mixture at each iteration 

D i M i  2 n . M .  1 1  
i= 1 i= 1 

(IV. 4 1) 

where Mi is the molecular weight of the ith species. 

For the first iteration, based on 1 gram of mixture, we will arbitrarily 

assume n = 1 and an equal mole fraction for  each of 2 0  gaseous species (C, 

CH, CH2, C H p  CH4, CO, CO2, C2, C2H2, C2H4, C20,  CQ, H 9 HCO, HO2, 

H2, H20, 0, OH, and 0 2 ) .  In Table VI we show A, 9, and G/2niMi for 

each iteration from 0 to 29. The zeroth iteration corresponds to the initial 

estimate. The parameters + and G/Z;n.M a re  also given in figure 1. 
1 i  

The control factor A, which is given in Table VI, is necessary to prevent 

divergence. It may be seen that A is less than 1 for the first four iterations 

and also for the 14th through 18th iterations. If no control factor were used, 

the corrections to compositions for some species would have been so large 

that the numerical values would have exceeded the maximum size number 

permitted by the computer (- 10 ). For those iterations where X < 1, the 

particular species whose corrections determined A are shown in Table VI. 

For this example the controlling species were C02, CO, CH4 and HzO. How- 

ever, for other problems or for this problem with other initial estimates, any 

species might control A .  

38 

An initial control on step size (A < 1) might have been expected for the 

first few iterations where composition, mass, and equilibrium relationships 
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are far from their final values. However, once the full correction has been 

applied (A = 1 from iteration 5 to 13), it might seem surprising to see ex- 

tremely tight controls on correction step size again being necessary (iter- 

ations 14 to 18). The reason this occurs is that with poor initial estimates, 

it is temporarily possible for one or more significant species to be made ex- 

tremely small. This occurred in this example for H20.  To compensate for 

this small value of HZO, the correction equations at iteration 14 called for 

extremely large corrections which, if permitted, would have greatly over - 
corrected H20.  The control factor A reduced these large corrections for 

several iterations until the full correction could again be permitted. 

The progress of the convergence may be followed in Table VI or  in  fig- 

ure 1. It may be seen that for all iterations either t,b, G/CniMi, or usually 

both decreased. The small increase in t,b at the last iteration simply indi- 

cates loss of numerical significance when convergence is essentially reached, 

In the third iteration G/ZniMi increased. If a mass constraint were im- 

posed in addition to controlling step sizes, the free energy would have moved 

continuously toward a minimum. However, in a method such as the one that 

is being used in this example, mass may vary at each iteration until con- 

vergence is reached, and free energy does not necessarily move contin- 

uously toward a minimum. 

This can be visualized by considering a simple system composed of one 
, 

chemical element with gm-atoms by and two species with moles n1 and 

n2 and having stoichiometric coefficients all and a12 respectively. If 

mass is constrained during the iterative process, then, at any step in the 

iteration 
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allnl + a12n2 = bl 
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(IV. 42) 

If mass is permitted to vary, its value bl is given by 

(Iv. 43) "11"l + a12n2 = bl 

Figure 2 is a sketch of f ree  energy with contour lines representing lines 

of constant Gibbs f r ee  energy. Also shown in figure 2 are a solid line and a 

dashed line. The solid line is a plot of equation (IV. 42), with mass constrained 

at the value by. Starting at point A, for the first iteration, the free energy 

decreases continuously to the solution at B. The dashed line indicates the 

free energy which could result from an iteration with mass unconstrained. 

Starting the first iteration at point C, the f ree  energy reaches a temporary 

minimum at D, increases to E, and then decreases again until finally the 

dashed line approaches the line AB as the mass converges to by. 

The previous discussion of f ree  energy is not intended to imply an ad- 

vantage for constraining mass during iteration. On the contrary, as pointed 

out in Section III, with mass constrained the calculations introdwe mass bal- 

ance e r ro r s  that lead continuously to mass imbalance for which there is no 

effective removal mechanism 1) Therefore it is a computational advantage 

not to impose mass constraints. This may be accomplished by including the 

terms (by - bi) in equation (In. 32). 

The convergence example was given to indicate that convergence in 

chemical equilibrium calculations is usually possible with a descent Newton- 

Raphson method in spite of rather poor initial estimates. The fact that the 

29 iterations were necessary to obtain convergence simply indicates that the 
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initial estimates were quite poor. Typical problems, that appear more dif- 

ficult to solve than the example problem, require considerably fewer iterations. 

For instance, consider the results in Table III which a r e  for a problem in- 

volving 69 possible species. For the first point shown (T = 5000' K), for 

which arbitrary estimates of composition were also used, 18 iterations were 

required. Each of the remaining 9 points started with the solution to the 

previous point for its initial estimate and required an average of 5.4 itera- 

tions for convergence. 

SUMMARY 

The calculation of complex chemical equilibria is an interplay of thermo- 

dynamic fundamentals and numerical analysis. In our review we have tried 

to consider both aspects of the problem without placing undue emphasis on 

either. Thus we have contrasted the two alternate, but equivalent, formu- 

lations of the conditions of chemical equilbrium: first as a minimization of 

the Gibbs free energy and second as a set of equilibrium constant relations. 

Next we considered some of the different numerical techniques that could be 

used in equilibrium computations and how some of these were implemented 

by various people. Finally we looked at some applications of the calculated 

results . 
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TABLE VI. - CONTROL FACTOR AND ERROR PARAMETERS 
DURING ITERATION FOR CH2 + 1.5 O2 AT 

T = 300' K and P = 0.01 atm. 

Iteration 
number 

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 

_1_- 

Control 
factor, 

h 

------- 
0.00959 

,03575 
.30119 
.59375 

1.0 
1.0 
1 .0  
1. 0 
1.0 
1.0 
1.0 
1.0 
1. 0 
.OQO19 
.00@40 
,00294 
,02193 
,17426 

1. 0 
1. 0 
1. 0 
1. 0 
1. 0 
1. 0 
1. 0 
1. 0 
1. 0 

-- 
Species and 

?quation number 
determining h 

C02? (IV.38) 
C02, (IV. 38) 
CO, (IV.38) 
CH4, (IV.38) 

H20, (IV.39) 
HZO, (IV.38) 
H20, (IV.38) 
H20,  (IV.38) 
H20, (IV.38) 

--- 
Error  

par am et er , 

I 

eq. (V.40)) i" 
1.55~106 
1. 5 3 ~ 1 0 ~  
1. 43X106 
4 . 2 2 ~ 1 0 ~  
6 . 8 7 ~ 1 0 ~  
2 . 4 1 ~ 1 0 ~  
4.24~10' 
2.46X1Oo 
4. 04x10° 
4 . 7 0 ~ 1 0 ~  

3.72~10' 
4.46X1Oo 

3. 0lxlO0 
9. 21x10-1 
1 . 1 4 ~ 1 0 ~  
1.14X1Oo 
1 . 1 3 ~ 1 0 ~  
1 . 0 8 ~ 1 0 ~  
7. 08x10-1 
8. 91xW4 
8 . 8 2 ~ 1 0 - ~  
1. 38xW5 
6 . 5 8 ~ 1 0 ~ ~  
7. 6oX10-8 
1. 04x10-8 
1.54~10-' 
2 . 6 1 ~ 1 0 - ~ ~  
9.13x10-" 
2. 57x10-l1 
4 .  09x10-11 --. . . I C . .  I - -I 

--*- ..R --_. 
Gibbs free 

energy, 
G/ ZniMi, 

+ 1185 
- 757 
- 1818 
- 1430 
- 1439 
- 1510 
- 1550 
- 1605 
- 1699 
- 1874 
- 2101 
- 2308 
- 2460 
- 2502 
- 2502 
- 2502 
- 2504 
- 2517 
- 2614 
- 2879 
- 2968 
- 3006 
- 3012 
- 3014.2 
- 3014.8 
- 3015.06 
- 3015.14 
- 3015.169 
- 3015.179 
- 3015.181 

c a l k  
~ I-l---.vI 

~ 
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Figure 1. - Rate of convergence for ( C H Z ) ~  + 2 02. 
( 2 )  

GI> G2> Gg> Gq> Gg 
(Lines of constant Gibbs free energy) 

Figure 2. - Sketch of two possible paths of convergence. 
Line AB (allnl + alp2 = bi): Mass constrained 
Curve CDEB: Mass unconstrained. 
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